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ABSTACT

Nitrate concentrations inparoxmately 46,000 vater samplesfrom
Texas wells are analyzed using spatial and statistical representations on a grid of
7.5 quadrangles. Ieach quadrangle containing at least 12 measurements, the
probablities of exceeding four threshold concerdtions probaibities of
exceedingfour concentation thresholds of nitratéd.1, 1.0, 5.0, and 10.0 mg/I
nitrate as niogen) are dsnated as the ratio of observed exceedences to the total
number of measurements. An alternatipeobabhlity analysis using the
lognomal distribution yields exceedencerobablities that show some
systematic difference from those computed directly from the data.

Five representative aquifers were chof@naddtional analysis. Nitrate
exceedenceproballities are relatively urform within aquifers, but differ
significantly from one aquifer to another. Theceedenceroballity for the 1
mg/l threshold was selected as best representing vulnerability to nitrate
contaminatn. The five aquifers, ranked from lowest to highest vulnktyaby
this criterion are: Carrizo-Witx, Edwards (Blcones Fault Zone), Hueco-
Mesilla Bolon, Ogillala, and Seywour. Evidence suggests that ate levels are
increasing across the state, and in the Ogallala in particular, but such trends are
not consistent across aquifers.

Linear regression was used to assess the relationship between nitrate
exceedenceprobaliities potential indicator parameters. The dominant
parameter is the aquifélom which the sample is drawn.eting this aside, the
only consistently significant indicator is averagmaal rainfall: groundvater is

more likely to be contaminated in regions where rainfall is low than in regions



where rainfall is hgh. No signifcant relation between the spatial patterns of

nitrate contamination and the sale of nitrogen fertilizers was found.
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Chapter 1: Introduction

The objective of the stly presented in this dissation is to develop a
methodology for assessing the vulneligbof groundvater to contamination by
agricultural chemicals. Federal water quality regulations have created a need for
such assessments, but do not specify the methods to be used, or rigorously define
groundwvater vulnerability. The presentovk adva@ates a statisticalpgroach to
vulnerability assessmenthd, in keeping with that approach, suggests that
probaklity of contamination a quantity that can bexgressed numarally, be
used as a surrage for vulnerability, which remains a rather nebulous and
unquantifiable commodity.

In this work, the wordssusceptibility, vulnerabilityand risk represent
related, but distinct, ideas. @roundvater sipply is said to besusceptibleto
contamination if it is possibléor a cotaminant to reach it, even if n@wce
exists for that cailaminant. Thewpply isvulnerableto a particular contaminant
if it is susceptible and a source of the contaminant is present. ridkhef
contamination is the likeliood or probaitity that the contaminant is actually
present in the groundser. Risk, unlike susceptibility and vulnerability can be
described by a number. In other words, risk is quantifiabléevesceptibility
and vulnerability are not.

In addition to risk of contaminaitn, there are other risks assted with
groundwvater quality: risk of humanxgosure to the cdaminant, risk of adverse

public health effects, and son. Although these risks are important to the
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formation of public policy, they lie bgond the scope of this study, which is
concerned solely with the likélbod that a cdmminant is present in a
groundwater supply.

Although risk of cotamination is quantifiable, it is not measurable.
Water quality measurements describe the degree to which chemical constituents
are present in water—their concentration—not risk or pridibab How, then, is
it possible to conduct statisticalinvestigation of groundater susceptibility or
vulnerability, which canot be quantified, or of risk of groundver
contamination, which cannot be measured?

This work proposes that an answer to this quedtemin the following
postulate: For anypody of groundwter and any chemical constituent, there

exists a probabty distribution function, P(®), describing the likelihood that a

sample, chosen at random from that bodyfl @ontain a concentration of the
constituent greater than a threshold concewimaty. While this concentration
probalility distribution is not identical to risk of contaminati, susceptiitity, or
vulnerability, it is closely related to all three, and is both quantifiable and
measurable, to the extent that its parameters can be estinfiated
measurements of concentration taken from the groundwater body.

A body of groundwter contains an infinite number of potential water
samples—apopulation in statistical sgot—the concenation probabity
distribution P(®), describes that pofation. Actualmeasurements of constituent
concentrations in this body of grounater make up aampleof that poptation.

Propeties (calledparameter} of the concentration probgiby distribution can

17



be estimated by calculationsrfimed on the sample. Thesetiesmtes are
calledstatistics The methodology adeated here uses statistics calculdtec
groups of groundater quality (i.e. constituent concentaat) measurements as
surrogtes for risk of coraminaton, which cannot bemeasured, and for
susceptibility and vulnerability, which cannot be quantified.

The particular results presented hinen a s@gtial and statistical sty of
the presence of nitrate igroundvater in Texas. This vk analyses nitrate
measurements collecteldrbughout the @tefrom 1962 to 1993 and recorded in
the Texas Water Development Boardsohd Water Data System @idstrom
and Quincy, 1992), and usdatsstical methods in conjuantion with a geographic
information system (GIS) and a relational database management system to
organize the data and form conclusions.

Although the present work was dated toward the vulnerability of
groundvater to agricultural chemicals, of which nitrate is a widely measured
representative, the nteids developed in the course of this study are rextisp
to agricultural chemicals or fgroundvater. The sameparoach could easily be
applied to ndustral contamination of air, or any number of othferms of

pollution.
1.1 MOTIVATION

This impetus for this study comes from thatinal Primary Drinking
Water Regulationg40 CFR 141), which took edftt in Januaryl993. These
regulations implemenprovisions of the revised Safe Drinkinyater Act by

listing 60 maximum contaminant levels (MCL®r congituents that must be
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monitored by operators of public watenpplies, and imposing schedules for
monitoring those constituents. Earlier regulations listed only 34 MCLs, so the
costs of monitoring have increased significantly, especially since most of the
additional MCLs are for organic emicals such asndustial solvents, like
toluene and trichloroethylene, and pesticides, like atrazine and @aaiich
require more expensive analytical mmeds than inorganic or nutrient
constituents. To reduce the finandiakden on regators and water systems, the
regulations allow the State agenciespmsible for enfamement of the Safe
Drinking Water Act to waive some monitoring requiremefds a number
constituents, including several agricultural chemicals, in water systems that have
been shown, over several monitoring cycles, to beffoee cortaminationfrom

those constituents.

Waivers may also be granted to systems that have been showugtt a
vulnerability assessment, to be secfirem cortaminaton. The chwe of
vulnerability assessment nmeid is left to the &te, subject to@proval by the
Environmental Protection Agency (EPA), but must include eithdficent
knowledge of previous use of the ctingent in regions contributing to the water
supply that the tate can be sure that nousce of the constituent is present, or
evidence that the watenply is praected by soil or geologicabaditions, and
the structure of the well.

The Water Utilities Division of the Texas Natural Besce Conseiation
Commission is responsible for endement of the National Primary Drinking

Water Regulations in Texas. The Water Utilities Division is engaged in an
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ongoing effort to record the dations and descriptions giublic water apply
wells in Texas in a gggraphic infomation system (GIS), in part to facilitate the
analysis of wells and theiugoundings for the purpose of granting monitoring
waivers.

The original purpose of this study was to devise anraated system for
vulnerability analysis using the Water Utilities Division's GIS data.

It soon lecame apparent that the data that was available in Statewide GIS
coverages and databases was not adequdtentiothe basis of a vulnerdity
assessment system. In particulbydrogeologic infomation such as aquifer
composition, degree of conément, andjroundvater flow direction do not exist
in GIS form for the fate as a whole. In the absence of such data, the study
focused on evaluating the usefulness of the dataishatvailable in GIS for
predicting groundvater vulnerability, and developing a rhetl for deriving a
statistically basedjyroundvater vulnerability assessment et from existing
groundwater quality measurements.

Concentration Thresholds. Laws like the Safe Drinking Water Act and related
regulations set thresholds to trigger regafgataction, so the liklihood of
exceeding thresholds is of more practical value as an measure of vulnerability
than other statistical measures such as average concentrations. This study
explores the use of exceedence probability as a measure of vulnerability.
Databases and Geographic Information Systems. Data management
technologies, such as GIS,ilwplay an increasingly large role iforming

environmental policy and EPA has identified GIS as aooirtant technology for
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groundwvater protecton. The "GroundAater Data Management Summary and
Recommendations” chapter of the 1991 final report of EPA's Grélater Task

Force states that

GIS is an emerging tool for cross-media planning and iatedr
environmental management, and basegramactivities such as
permitting, insgction, and enfarement. In additn, it is
particularly useful in ris-based priority stting of Regional
program conmitments and regirce requirements. GIS has been
found to be increasingly useful in program planning and priority
setting activities, once the investment in area-specific mapping
has been accomplished. As EPA begins using GIS in its decision
making, it is also important to begin promoting the use of GIS by
the State'sdic] in their decision making process. (USEPA, 1991)

Data Stockples. Government agencies have collected and stoogg amounts

of environmental data. GIS and database management sydtemsmeans for
manipulating and analyzing this dada masse This studyattempts to ddress
guestions like "What benefits do this mass of daffar?” "What addional
value does GIS give to that data?" "What are tm@tsomings of publicly
available data sets, and how can they be improved for future use?"

Spatial Patterns of Nitrate in Texas Groundwater. Figure 1.lillustrates some

of the essential points of the rhets developed in this study. The figure shows
three maps of the 254 cdies of Texas. In each map, theuaties are collected

in groups cotaining one-fifth(20% or 51) of the coures, based on the level of a
nitrate-related value definefbr all counties. For , for example, a el is
considered "vulnerable" if the Texas Water Development Bogrdisndvater
database shows that a nitrate concentration in excess of the MCL of 10 mg/l has

been detected there. Theunties are ranked by th@oportion of vulnerable
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wells to the total number of wells listéor that county in the atabase. The 50
counties with the highegiroportion of vulnerable ®lls are shaded red. The
next-highest 51 counties are shaded orange, and.sd he redting ranking of

the counties can be used as an estimate of the relative vulnerability of the
groundwater supplies in those counties to contamination by nitrates.

This estimate of vulnerability can then be compared to a candidate
indicator, such as nitrogen fi#izer sales, to test the value of that candidate for
predicting groundwater vulnerability.

The figures rank the counties according to:

Figure la: The proportion of ells where nitrate concentrationbowe 10
mg/l (as Nitrogen) have been detected
Figure 1b: The proportion of@lls where nitrate concentrationsawve 1 mg/I

(as Nitrogen) have been detected
Figure 1c: Nitrogen fertilizer sales during the years 1986-1991

The data sources for the three maps are described in Chapter 3.

The figures show somelear patterns, some of whialun counter to
intuition. A striking contrast can be seen between thelifer sales and the
appearance of nitrate groundvater. The belt of high fertilizer sales in east
Texas does not appear to create arasponding high level of ndte in
groundwvater. In fact, the region with the highest rate of nitrate concentrations in
excess of 10 mg/l (the MCL for ndtte) liesnorthwest of [@llas, spatially
separatdrom the regions of highest tdizer use. Fertilizer salesgures appear

to have relatively little value as an indicator of the liketbd of finding
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groundwater nitrate concentrations in excess of either of the two thresholds
considered inFigure 1.1 The figure does, however, show largals regional

variation in frequency of elevated nitrate concentrations and different patterns,
which suggests thatath with coarse spatial resolution can have some value as

indicators.
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a) Nitrate Measurements > 10 mg/l  b) Nitrate Measurements > 1 mg/I

c) Nitrogen Fertilizer Sales

Rank of County
(Percentile)

80-100

60-80

40-60

20-40

0-20

No Detections (a & b)

Figure1.1 Nitrate-Related Ranking of Texas Counties



1.2 OBJECTIVES

At the time this research wasoposed, the intended jebtive was to
develop an automated systdan granting vulneraitit y-based waivers for ater
quality monitoringunder the [dtional Primary Drinking Water Regulations.
Because those waivers require a high degree of certainty in identifying regions
that arenot vulnerable, and because of a lack of statewide geologic data in GIS
form, this goal was found to be ingmtical. The focus of thewsly shifted to
improving vulnerability assessment methods using available data.

The objectives of this study are:

1) To formdate a spatially variable statistical model capable of representing in a
compactform the infomation contained in tens ohdusands of ater-
quality measurements spread over an area the size of T@h900
km?2).

2) To apply this model in identifying spatial patterns of nitrate detection in
Texas as a whole and in five selected major aquifers.

3) To estimate the relative portance of a small number of indicators—soil
conditions, precipitation rates, fertilizer sales—in predicting the
likelihood of contamination of groundwater by agricultural chemicals.

4) To evaluate the usefulness of ag@phic infomation system and a database
management system inrcang out an empical sudy based on historic
data.

5) To evaluate the usefulnesspaiblicly available, computerized emenmental

data for estimating the vulnerability of groundwater to contamination.
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1.3 SOPE OF STUDY

The following limitations define the scope of this study.

1) The analysis of nitrate concentrations is restricted to data in the Texas Water
Development Board's Groundter Data System. This limits the study
area to Texas and provides a single, consistent source for well
descriptions and nitrate concentration data.

2) All the data used in this ugly comes from atabases maintained by
government agemes and available on a Statewide basis. This excludes,
for example, dta collectedor studies of single aquifers or grouraher
systems, unless they have beenorporated into Statewide databases.
For example, maps of dominant grourader flow directon, which exist
for some aquifers, are not useechuse this data is unavailable over most

of the State.
1.4 PROJECT SUMMARY

The study can be divided into the following three major steps.

1) Define bodies of groundMerfor this study and sorheasurements of water
quality by their association with thebedies. Two types of definition are
used. The first, based purely on looatidivides Texas into seven-and-a-
half minute (7.5' ) quadrangles, and defines a distinct bodyatérwor
each quadrangle. A measurement is associated with a given quadrangle if
the wellfrom which it was cbected is located in that quadrangle. The
second set of grounditer bodies is composed of five aquifers selected

from the TexasWater Development Board's map of major and minor
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aquifers (Ashworth and Flores, 1991). nfeasurement is associated with
a given aquifer if the wefrom which it was ctiected draws watdrom a
hydrogeologic unit associated with that aquifer.

2) Calculate statistical estimates of nitrate concentratprobalility
distributions associated with tH®dies of groundater. Both discrete
probalilities (estimates of theroballity that various nitrate levels will
be exceeded) and comtious distributions (éisnates of the parameters of
a probablity density function) arecalculatedfor the groundwterbodies
identified in step 1.

3) Relate the statistics calculated in step 2 to indicator variables. Potential
indicators of water quality considered in thisdst are: average annual
precipitaton, average soil thickness, average soil organic content, and
estimated nitrate fertilizer application rate. These indicators were chosen
as candidates because they were readily available, and could be plausibly
linked to the degree of vulnerability of tjeoundvater in a regn. The
variation in the chosen indicators will be compared with the variation in

the statistics using stepwise linear regression.
1.5 CONTRIBUTIONS OF STUDY

The study makes the following contributions to knowledge and
understanding of groundwater vulnerability analysis:
1) The formilation of a spatially varying statistical modeom which

exceedencerobabllities (estimates of the likdibod that a coniguent
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will be found in concentttions exceeding a selected threshold value) can
be calculated as a quantifiable measure of groundwater vulnerability.

2) The development of a quantitative, statistical hoétfor assessing the
relative value of indicators ofgroundwater vulnerability, and a
demonstration of this method with a small number of potential indicators.

3) Application of the bove to a large body ofatlh drawnfrom a diversity of
hydrologic and geologic settings.

4) Insight into the variation ofjfroundvater vulnerability in Texas, and the

factors that influence that vulnerability.
1.6 QUTLINE OF DISSERTATION

This dissertation consists of seven chapters.

Chapter One, this chapter, sets out the motivation, goals, scope and plan of the

research project.

Chapter Two, Literature Review, summarizes the existing statenmfledge
about the prdlems ofgroundvater vulnerability analysis, with particular
emphasis on statistical and empirical approaches.

Chapter Three, Datao8rces and Description, describes thatadthat are
analyzed in the research, where they cdmoen and how they were
manipulated to support the needs of the research.

Chapter Four, Methods, describes thathematical models and rhetls that
were employed in the research. The emphasis in this chapter falls on the

theoretical and mathematical aspects of the research.
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Chapter Five, Procedures, focuses on tbmits of carying out the analyses.
This "how to" chapter describes the computer programs abatally
carried out the mathematics described in Chapter Four.

Chapter Six, Results, presents maps, tables, and summary statistics that describe
the distribution of nitrate in Texas, its relation to indicator variables, and
the relationship between nitrate distribution and theuweoce of
pesticides in groundwater in the midwestern United States.

Chapter Seven, Conclusions, finishes the dissertatiooffeying a sinmary of
the completegroject and the meaning of the results presented in Chapter

Six.
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Chapter 2: Background and Literature Review

The purpose of this chapter is to set the present study in the context of
other studies of grounder vulnerability. Since thiswsly employs atatistical
approach to vulnerdily assessment, the literature review emphasizes those
studies that have applied statistical hwets to this prdem. In additon, the use
of nitrate as an indicator of vulnerability to contamination by agricultural
chemicals is discussed.

This chapter addresses the following questions:

* What uses are there for groundwater vulnerability analysis?

What methods are used for groundwater vulnerability analysis?
* Why use a statistical approach?
* How have statistical mievds been apied to groundwater vulnerability

analysis?

What does the occurrence of nitrate indicate about agricultural contaminants?
* How does the method used in the present study differ from prevatisgtical

approaches?
2.1 USES FORGROUNDWATER VULNERABILITY ASSESSMENT

A groundwater vulnerability analysis identifies regions where
groundwvater is likely to become contaminated as a result of human activities.
The objective of vulnerability analyses is to direct regugt monitoring,
educational, and policy developmerftoets to those areas where they are most

needed for the ptection of groundvater quality. Endamentally, this is an
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economic goal, rather than a scientific one. Vulnerability analysisild
provide an answer to the question "Where should groatehprotection &orts
be directed to rern the most environméad andpublic health benefitfor the
least cost?"

In its 1991 final report, EPA's Grountlater Task Force states as part of
its "GroundWater Protection Principals" that ffarts to prdect ground vater
must also consider the use, value, antherability of the resource, as well as
social and esnomic values." (USEPAL991, emphasis added). The report goes
on to list consideration of groun@ier resurce vulnerability as part of a
"mature” method for edting priorities for groundvater protecton. As an
example of Statefiorts EPA regional oftes $ould use as indators while
evaluating progress in the itgmentation of State iGund Water Protection
Plans, the report cites development of

a comprehensive State vulnerability assessméott eéhat can
assist in developing State Pesticide Management Plans; targeting
mitigation measuresinder $ate Nonpoint Source Managnent
Plans; and prioritizingground-vater areasfor geograplcally-
targeted education; permittingnfercement and clean ugferts
across all ground-water related programs.

Two specific examples of EPA's intended use @foundvater
vulnerability analysis are the existing regulations defining National Primary
Drinking Water Standards, and tpeoposed differetmal protection strategy for
imposing more restrictions on pesticide use where groundwater is vulnerable.

The first example was discussed @napter 1 The second example,
EPA's proposed differé¢ial protection strategyor pegicides, is summarized as

follows
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Under the new strategy of differentigbrotecton, if EPA
determines that a pesticide poses a significant human health or
environmental risk (because it may leaclytoundvater) and the

risk cannot be elalt with by labeling or national restricted use
provisions, a tate management plaisNIP) will be required for

the sale and use of the pesticide in a state. The plan must describe
how the risks will be ddressed. As part of these planates will
target specific areas, disguishing those lales that warrant
enhanced protectiofiom those that merit lessttention because

of the lower value of the groundwer and/or their lower
vulnerability to groundwater contamination. (GAO, 1992)

The National Research Catin(NRC, 1993) has identified four general
categories for the use of groundter vulnerability analysis. These are: policy
analysis and development, program mamagnt, to mform land use ekisions,
and to improve general eclation and awareness of a regiohgdrologic
resources. Judging by EPA's régory actions and statedyroundvater
protection stratgy, by the pubcation of the NRC rport, and by the results of a
General Accounting Officeusvey (GAO 1992) sating that 42 of 45 r@ending
states had andwted someform of groundvater vulnerability analysis, it is
reasonable to conclude that grourader vulnerability analyses are going to play
some role in public policy orgroundvater quality, and that miebds for

improving them should be studied.
2.2 GROUNDWATER VULNERABILITY ASSESSMENT METHODS

Comprehensive reviews of groundti@r vulnerability assessment meds
are presented in reports by the General Accounting®©{GAO, 1992) and the
National Research Coaih (NRC, 1993). Both reports divide grounaler

vulnerability assessment nhetds into threecategories: (1) overlay and index
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methods, (2)methods employing process-based datian models, and (3)
statistical models. The same categories will be applied here.

Overlay and Index Methods. Overlay and index methods (t&AO report calls

these "parameter weighting" rheds), combine maps of @aneters considered

to be influential in contaminant trgg@t. Each parameter has a range of
possible values, indicating the degree to which that pararmpeitacts or leaves
vulnerable the groundater in a regin. Depth to the groundser, for example,
appears in many such systems, with shallow water considered more vulnerable
than deep.

The simplest overlay systems identify areas where parameters indicating
vulnerability coincide, . shallow groundvater and sady soils. More
sophisicated systems assign numerical scores based on several parameters. The
most popular of thesemethods, DRASTIC (Ber, et al. 1987) uses a scoring
system based on seven hydrogeologic characteristics of a region.

The acronym DRASTIC stands for the gameters included in the
method: _[@pth to groundater, Recharge rate, duifer media,_8il media,
Impact of vadose zone media, ahgldradic Conductivity of the aquifer.
DRASTIC is applied by identifying mappable units, callbgidrogeologic
settings, in which all seven parameters have nearly constant values. Each
parameter in dydrogeologic stting is assigned a numerical ratiingm 0-10 (O
meaning low risk; 10 meaning high risk) which is multiplied by a weighting
factor varying from 1-5. Two sets of weights, one for general vuliligyab

another for vulneralhty to pesticides can be used. A scdog the ®tting is
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calculated as the sum of the sevenoducts. DRASTIC scores are roughly
analogous to the Iéihood that cotaminants released in a region will reach
ground vater, higher scores implying higher likelihood of tamination.
DRASTIC is used to produce maps of large regions showing tkéitive
vulnerability. Its attors reconmend that it be applied on no region smaller than
100 acres.

Several other overlay and index systefos groundvater vulnerability
assessment exist; the NRC report lists seven, including DRASTICicallyp
such systems include variables relatedrtmund vater recharge rate, depth to the
water table, and soil and aquifpropeties. The relative importance of the
variables and the methods for combining them vary fromnoethod to another,
but all share some common traits. In general, overlay and inddvodsetely on
simple mathematical representations of expert opiniand not on process
representation or empirical data.

Mathematical Models. Process-based mathematical models such as PRZM,
GLEAMS, and LEACHM can pradt the fate and trapsrt of comaminants

from known sources withemarkable accuracy in a localized area by applying
fundamentalphyscal principals to predict the flow of water porous media and

the behavior of chemical constituents carried by that water. In the hands of
knowledgeable analysts with the appiap site-specific riformation, such
models allow threats to the safetygrbund vater sipplies to be remgnized and

can play an important role in planning remediatidfores. Unlike other
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groundvater quality prediction mhbds,mathematical models predict variations
of water quality both in space and in time.

Although process models offer the most sofptaesed, and potentially
most accurate predictions of water quality, they are not widely fase@gional
groundvater vulnerability analysis. Rerting on the vulnerability assessment
methods used bytate agencies, th&AO found that none usenhathematical
process models (GAO, 1992).

The Federal Republic of Germyg however, has sponsored a ralkixg
project to identify the regions most susceptible nitrate contamination of
groundvater (Wendland et al1993). The dta and model are based on a grid of
the nation consisting of nearly 40,000 3 x 3 kmils. The data include five
hydrologic tlemes, seven soil themes, thit@gdrogeologic temes, six themes
describing regional groundser flow, and five themes contributing to the
nitrogen cgle. From this data, the modpftoduces a map of "Denititfation
Condtions" and three maps of potential nitrate concentratiorder different
flow assumptions. The quantity of data requifedthis study, both in terms of
characteristics mapped and detail of magprequires grater resurces than any
State in the U.S. has presently devoted to groundwater vulnerability analysis.
Statistical Methods. Empirical or statistical mébds are thdeast common
vulnerability assessment nhetds in theliterature. Alhough $atistical studies
are used as tests for othmethods, and getadistical methods such as kriging are
frequently used to describe the distribution of water quality parameters, very few

vulnerability assessment neids are dectly based on statistical nheids. The
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GAO report identifies onetatistically based mbabd, and the NRC report adds
one more. These will be discussed in the following eactiln addion, the
GAO reports thatalthough twelve taites use empirical ntetds for assessing the
vulnerability of groundwvater to pesticide contaminati, theirmethods are not
published, and have not been verified.

Checklists. A fourth category, not included in theGAO or NRC reorts,
encompasses the methods used by Texas and several @tesrfa their
Primary Drinking Water Standardsifercement. These ntetds provide a
checklist or decision tree, based on well constamgtgeologic and soilatctors,
and the presence of chemicabusces in the vicinity of the well. The
vulnerability assessment nheidd used by the Texas Natural Resource
Conservation Commission (Blodgett 1993) is a representative example.

The assessment consists of the following steps:

=

. Determining the location of the water supply well.

N

logs for the well.

w

Verification ofproper vell constructbn, and identitation of avulnerability
point—typically the bottom of a cemented well aagithe top of a gravel
pack, or the top of the well's shallowest open interval. A well lacking
cemented casg, or otherwise improperly constted is considered
susceptible to contamination.

4. Examination of driller's logs to determine geologic susceptibility. The

thickness of aquitards (materials with low verticandctivity) above
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the vulnerability point is tabulated. If the vulnerability point lies below a
single aquitard layer thirty feet thi¢korty feet if the aquitard isxposed

at the surface) or below multiple aquitard layers with a total thickness of
100 feet or more, the well is considerptbtected(not susceptible). A
different method is used for wells in fractured rock or carbonate aquifers.

5. Delineation of a zone of contributifor susceptible wlls. The limits of the
zone for a forty-yeatime-of-travel arecalculated with a semi-analytical
computer model, WHPA, also uséa wellheadprotectionprograms in
Texas and other states.

6. Review of contaminant use in the zone of contrivuti A varety of
databases with spatial coordinates are used for this purpose.

7. Waiver determinath. Using the results of the gmeding steps, a list of
contaminants to be testéar is geneated. Three- to nine-year waivers
are given for contaminants not requiring monitoring.

The above procedure, and iengBar vulnerability assessment nhed for

Wisconsin (Wisconsin Bureau of Waten@ply 1992), rely on a processndar

to the overlay and index methods describedierar Like those methods, the

checklist applies expeknowledge and opinion simatically to thgprodem of

vulnerability assessment, but does not employ a spgmificess model (except

in an ancillary role) or an empirical/statistical basis for its recommendations.
2.3 JATISTICAL GROUNDWATER VULNERABILITY ASSESSMENT

Between them, the GAO and NRCpoets on vulnerabty assessment

methods found only two publishednethods for ttistical groundvater
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vulnerability analysis. Ahough a number of studies have lkgxb statistical
methods to verifying othemethods, or have sought to prove or disprove a
correlation between single enenmental parameters (land use/land cover, for
example) and groundater quality, attempts tproduce a pradtive mehod for
groundwater qualityfrom empiical data are uncomom. A literature search
revealed only six studies (including the two listed in@#&0 and NRC rports)
that attempt to identify and rate the gortance of multiple indicators of
groundvater vulnerability orgroundvater quality. None of these studies used
geostatistical methods.

Teso et al. (1988) used disninant analysis—a statistical ninetd for
assigning objects to cageries based on their location in a multi-dimensional
data space—to identify sectiof@emile squares) in FresnGounty, @lifornia
as susceptible (or not) to damination byl,2-dibromochloropropane (DBCP).
They compiled bothgroundwater DBCP measurements and soikot@omic
groups for 835 ections. Based on the DBCP measurements they sorted the
section into catgories of "contaminated,” meaning that DBCP had been detected
in a well located in that section or "not contaminated,” meaning that no wells in
the section had detectable levels of DBCB11 of the 835 extions were
classified as contaminated. In adolitj the presence or absence of soils
belonging to 228 taxomoic groups was encoded in a 22@énsional binary
vector foreach sectin. A 1 in the H dimension of a section's soil vector
indicates the presence of soil type n; a 0 in the same place indicates its absence.

The 835 sctions were used to calibrate a discriminfumtction that identifies
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any point in the 228ithensional soil data space as "contaminated" or "not
contaminated.” A similar analysis with a smaller number of highger soil
classifications (the&28 taxonmic groups were reduced to only six soil series)
yielded a discriminanfunction based on the presence or absence of only six soil
series in a sean. This reduced disoninant function yielded &.776 sacess
rate for classification of sections in FresnGounty. When tested on an
independent data sébm nearby Merced County, thamefunction yielded a
success rate of 0.573.

Chen and Druliner (1986) alg@d multiple linear regression to
measurements of nitrate and herbicide concentrations in 82 wells tapping the
High Plains Aquifer in Nebraska. They used the regressiohadeb identify
those environmental factors mostosigly related to the concentration of nitrate
and triazine herbicides (a class of herbicides that includes atrazine, cyanazine,
and others). They found that three variablesli(aeepth, irrigatbn-well density,
and nitrogen-failizer use) explain 51% of the vaation in nirogen
concentrations, and that two variables (specific discharge and well depth) explain
60% of the vaation in triazine herbicide concentrations. Using nitrate
concentration in combination with specific discharge exple#84% of the
variation in triazine herbicide concentrations.

Statistical Studies of Graindwater Quality Indicators. In addition to the
studies identified by the GAO and NRCpaosts, other research has used

statistical métods to identify elationships between small numbers of indicators
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and measured water quality parametersicaigh not diected towardgroducing
a vulnerability assessment method.

Burkart and Kolpin (1993a) exnined the influence of a variety of
hydrogeologic and land-usadtors on the concentrations of nitrate and atrazine
in shallow aquifers over an area encompaspioigions of twelve States in the
midwestern U.S. They sought to identify adations between individual factors,
such as aquifer type or depth to grouathky, and the concentrations of the
constituents. Usingon-paametric metods, including the Mann-Whitney rank
sum test and contingency tables, they found sicamit differences in nitrate and
herbicide concentrations when wells ay@uped by aquifeclass (bedrock or
unconsolidated) and by depth of unconsolidated material over the aquifer.

Nightingale and Bianch{1980) used linear cafation coefficients and
multiple linear regression to examine the relationship between soil and aquifer
permeabilities and measurements obndictivity, anion, and cation
concentrations. Like the work of Teso et al., this study was based ondhilstor
measurementgrouped by theextionsfrom which they were taken. They found
that salinity was arrelated to soil and aquifer permeability, but that nitrate levels
correlated only with the estimated specific yield of the aquifer system.

Helgesen et al. (1992), seeking a ocection between land use and water
quality, delineated discrete regions of fonin land use over a portion of the
High Plains aquifer in southern Kansas. They selected one wehddmafrom
each region and tested a water sanfigiea varety of agricultural and petroleum

related chemicals. dh-paametrichypothesis tests showed sigo#ntly higher
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mineral concentrations under iragd coplands and petroleum-producing areas
than under undeveloped range land.

Baker et al. (1994) used an approaichilar to that ofBurkart and Kolpin
(1993), but apied it to a largetbody of samples, t¢ected hrough a voluntary
well testingprogram. Samples ofaterfrom rural wells submitted by more that
43,000 patiicipants in twelve states were analyzid nitrate and herbicide
concentrations. Non-pametric statistical mbbds were agfed to compare the
analysis results with descriptions of the wells and thairosindings sufmitted
by the participants with the water samples. Tfoeymd that the age of theel,
its depth, and its pramity to feedlots or banyards signitantly influence the
likelihood of finding elevated nitrate concentrations in the samples.
Likelihhoods increased dmatically when two "risk factors" were combined.
They also found thatattors influencing nitrate exerted similar influences on

herbicide concentrations.
2.4 C(HOICE OF METHOD

A statistical pproach wasedectedfor this study for two reasons. The
first is dissatisfaction with index/overlay nhedds and process-based models.
The second is the appropriateness of this approach to GIS-based analysis.

Although they represent informed opinion, and apply consistent standards
to all regions, overlay and index rhetls lack a sund methodologeal
foundation, being basedeither on direct observatiaror first principles. "These
methods are driven largely byt availability and experuggment, with less

emphasis on processes controlling grouradew contaminatin. One can argue
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whether the factors included in the methods are tekevant ones for
vulnerability assessment and whether the factor ratingsppre@iate” (NRC,

1993). These doubts are supported by studies carried out to test DRASTIC. The
GAO report observes that "...tests of DRASTIC gaaibr indicated apoor
relationship between model predictions (that is, relatiggoundvater
vulnerability), and monitoring results (that is, wheretpgdes arefound)” (GAO

1992).

Overlay and index methods are also difficult to interpret ttaively
and provide no ¢gnates of uncertainty. Is a region with a DRASTIC score of
200 twice as vulnerable to contamination as one with a scof®@? Does a
DRASTIC score of 15@nean "betweet40 and 160" or "between 100 and 200?"
DRASTIC's authors do not provide answers to these questions and caution
against any absolute interpretation of the index. This places serious limitations
on the value of DRASTIC as a guide to forming policy. Since DRASTIC is the
most thoroughly studied of the index/overlayteyss, otherstould be viewed
with less confidence.

Mathematical models ajroundvaterprocesses have the great advantage
of being based on sound principles, rather than opinion, but thislititeego
enhance their value for poy guidance at a state or regional level. The models
require more expertise and (as illustrated by the German example) more detailed
data than state agencies gaovide on a regionakale. The NRC mgort offers

the following view of process models.

It must be recognized thatophidicated models may not
necessarily provide morelrable outputs, especialfpr regional-
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scale, and evefor field-scale applications. Since ddta many

of the required input pameterdor sophisicated models are not
always available, their values have to be estimated by indirect
means using wrogate parameters or extrapolatédm data
collected at other locations. riars and uncéainties associated
with such estimates or extrapolations can be large and may negate
the advantages gained from a more rigorous process description in
the simulation model. (NRC 1993)

Given the state of available data, such models are not well suited to the task of
regional assessment of groundwater vulnerability.

Statistical pproaches offer the posgity of a mehod that is as easy to
apply as an index/overlay method, but with a more defensible &biond The
weighted-sum approach of DRASTIC looks like the product of &iphel linear
regression, and the NRC report observes that "Vulilggassessment miedds
that use overlay/indexing techniques are an eyebdbesh of mutivariate
discriminant analyses that laghrobabhlity estimates” (NRC1993). Since
overlay methods look like the results tditsstical analysis, why not develop one
thatis what it looks like? Although it is risky to apply empal mehods outside
the range of conditions over which it was calibrated, sucthodlstare ateast
based on real measurements, not just a set of opinions.

Data Requrements. Statistical mdiods require ata, the more data and the
higher the quality, the better. Collection gfoundvater quality data is
expensive and time-consungj, driving up the cost oftatistical investigations.
Burkart and Kolpin orchesited the collection of samplegsom 303 wells
throughout the midwest during the spring andnswer of 1991. This was a
substantialindertaking with very careful qlity control, and iproduced roughly

600 measurements of herbicide, nitrate, and ammonium concentratsiven
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the size of the regionnder study, this is ammall number of measurements on
which to base broad conclusions of cause andceff Anyone attempting a
regional-scale sty of water quality faces a very substantipiodem in
gathering sufficient data.

At the time this sidy was begun, the existing body of fi@ge data in
Texas was not sufficient form the basis of atatistical sudy. EPA'sPesticides
in Groundwater DatabaséEPA, 1992), which comjgs monitoring aidy results
over the period 1971-1991, daims only511 peticide measurements in Texas.
The Texas Department of Agriculture (Aurelid®89) carried out a pilot study
in 1897 and 1988 to #mate the extent to whiclhural domestic wells are
contaminated by pesticidé®m nonpoint agricultural sources. 17®lNg were
tested for nine pésides, arsenic, and nitrate. Thedt was confines to high-
risk areas and cannot be considered as representative of the State as a whole.

Since pesticide measurements groundvater were not adequate to
support the development of gasstical method for groundwter vulnerability
analysis, another constituent—nitrate, which has been extensively measured in

groundwater—was chosen.
2.5 NTRATE IN GROUNDWATER

This section presents a brief review of nitratgioundvater, relevant to
the present study, rather than a comprehensive review of the extkesatire
on nitrate ingroundvater. In particular, the nitrate cycle is discussed, and

important concentration values are identified.
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High concentrations of nitrate (NQin drinking water may cause the

disease methemoglobinemea in small children (H&989). Because of this and
other diseases linked to nitrate (and possibly because it is inexpensive to
measure), its concentration public water gpplies is monitored and regulated
by federal law. The National Primary Drinking Water Stand@4@sCFR 141)
set the maximum contaminant level (MCloy nitrate at 10 mg/l (measured as
nitrogen). Groundater systems must monitéer compiance with the MCL
annually. If nitrate in excess of 5 mg/l is detected, the system must increase its
monitoring to quarterly for at least one year.
Nitrate occurs naturallfrom mineral sources and iaml wastes, and
anthropogeritally as abyproduct of agriculture and from human wastes. Nitrate
is the most highly oxidizedorm of nitrogen in the nitrogen cle, which
includes activities in the atmosphetgjdrosphere, and biospheresigure 2.1
shows the following major transformatiofmem the nitrogen ogle (Madison and
Brunett, 1985)
Assimilationof inorganic forms of nitrogerammonia and nitrate) by plants and
microorganisms.
Heterotrophic conversionf organic nitrogen from one organism to another.
Ammonification of organic nitrogen to produceammonia during the
decomposition of organic matter.
Nitrification of ammonia to nitrate and nitrite by the chemigmbcess of

oxidation.

45



Denitrification (bacterial reductin) of nitate to nitous oxide (MO) and
molecular nitrogen (i) under anoxic conditions.
Fixation of nitrogenreduction of nitrogen gas tanmonia and organic nitrogen)

by microorganisms.

Madison and Bruett (1985) list the following asnajor anthropogenic
sources of nitrate: "fertilizers, septic tank drainage, feedlots, dairypauty
farming, land disposal of misipal and ndustral wastes,dry cdtivation of
mineralized soils, and the leaching of soil as the result of the application of
irrigation water." Natural sources include: "soil nitrogen, nitrogen-rich geologic

deposits, and atmospheric deposition."
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Heterotrophic Conversion

Organic Compounds
Containing Nitrogen

Ammonification Assimilation

Ammonium < Nitrogen Fixation | Nitrogen Gas
(NH4™) (N2)
Assimilation /
Nitrification or Denitrification

Denitrification

DenitW

Nitrite Denitrification Nitrous Oxide
(N20)

(NO2)

Assimilation
Nitrification or
Denitrification

Nitrate
(NO3")

Figure 2.1 Simplified Biological Nitrogen Cycle
[after Madison and Brunett (1985)]

According to Hem (1989), nitrogen occurs iater as nitrate or nitrite
anions, as ammonium cations, and in a varietprghnic compounds. Nitrite
and the organic ggies are unstable in aerated water. Ammonium cations are
strongly adsorbed on mineral sacks, but the anionic species are readily

transported in water and are stable over a wide range of conditions.
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Given the wide range of nitrat@wwces associated with agriculture, its
chemical stability in water, and its high mobility—to say nothing of the
frequency with which it has been measured in watd@trate is a natural choice
as an indicatofor vulneraliity of groundwater to contamination teaonpoint
agricultural sources. This use has been suggested by Cohen et al. (1984), and has
been tested by a number of investigators. Domagalski and Dubrovsky (1992)
found no signiicant difference in nitrate concentrations between wells with and
without tiazine herbicide residues in the San Joaquin valley offdCaia. An
examination of the mort by Burkart and Kolpin (1993a) shows that the
geological factors associated with high frequencies of herbicide contamination
are also associated with high frequencies of excess nitrate dete8aker et al.
(1994) found a imilar correspondence between ait and pesticide
vulnerability in samples collected from rural wells in 17 States.

Nitrate concentrations are usuallypogted in units of miligrams per liter
(mg/l) with the mass representing either the total mass of nitrate ion in the water

(nitrate-NQ®), or as the mass of only the nitrogen @ié-N). The molecular

weight of nitrate is 62; the molecular weight ofragen is 14, so theatio of a

concentration measured as nitrateg\NO an equivalent concentration measured
as nitrate-N i4.43. The MCL of 10 mg/l niate-N is equivalent td4.3 mg/I
nitrate-NQCg.

In their nationwide study of nate in thegroundwater of the U.S.,
Madison and Bruett assigned the following interetations to ranges of nitrate

concentrations (in nitrate-N)
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» Less than 0.2 mg/l-/Assumed to represent natural kgwund
concentrations.

» 0.21 to 3.0 mg/l—Tramsonal; concentrations that may or may
not represent human influence.

« 3.1to 10 mg/l—May indate elevated concentrations resulting
from human activities

*More than 10 mg/l—Exceeds maximum concentration for
National Interim Primary Drinking-Water Regulations.

Their selection 08.0 mg/l as a threshold to ilwdte human influence has been
followed by many investigators, including Burkart and Kolpin, and Baker et al.
The use of individual concentration levels in this study is discussed further in

Section 4.1
2.6 QUTLINE OF PROPOSEDVULNERABILITY ANALYSIS METHOD

The general form of the approach tatsstical groundvater vulnerability
analysis advanced in this work can be summarized in six steps. These are:
1. Select a constituent or set of constituents, whose presence will indicate
the degree of vulnerability of a groundwater source.
2. Identify a set of distinct mappable regions of the surface or subsurface.
3. Assemble a body agheasurements of the constituent identified in step 1

that can be linked with the regions identified in step 2.

4, Calculate descriptive statistifte the body ofmeasurements linked with
each region.

5. Map the variation of the descriptive statistics from region to region.

6. Relate the variation of the descriptive statistics to the variation of

indicator parameters biprming a mathematicalxpression thamimics
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the relationship between the descriptive statistics and indicator values

mapped over the same set of regions.

The results of these steps include maps and numerical values associated
with the regions, indicating their vulnerability to contamination as represented
by the descriptive statistics, and a mathematical model that permits those results
to be extended to areas where water quality data have not been collected, but

values of the indicator parameters are known.
2.6.1 Comparison of Method with Previous Studies

The six steps are proposed as a synthesis of the approaches taken in the
statistical studies cited ifection 2.2 The work of Teso et al. (1988), and
Nightingale and Bianch(1980) follows steps 1 through 4 by dividing the study
area into regions by square-mile senti forming groups of ater quality
measurementBom historic dta based on the location of sampling sites in the
sections, andorming summary statistider each sectin—binaryclassifications
in based on the presence or absence of DBCP in any well in the section in Teso et
al, arithmetic averages of nitrate concentrations and electocaluctivity for
all measurement$rom the ection in Nightingale and Bianchi. Similarly,
Burkart and Kolpin (1993b) grouped thmeasurements collected in their
reconnaissance of agricultural contaminants in the mid-continental U.S. by their
location in major land resirce areas (MLRAs) and calculated a third type of
summary statistic—the frequency with which threshold concentrations of nitrate

and herbicides were exceeded in measurements collected in the MLRAs.
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Burkart and Kolpin, Baker et al. and Teso et al. mapped their results (step 4), but
not Nightingale and Bianchi did not.

Comparison of summary statistics to indicator parameterdgagingation
of a mathematical model (step 5) is carried out in all of the cited studies except
for Burkart and Kolpin (1993b). Chen and Druliner (1986), and Helgesen et al.
(1992) compared indator parameters directly to concentrationporéed in
individual water samples rather than statistics calculated gosups of
measurements, albugh Helgesen et al. inteméich well to represent a region.
Burkart and Kolpin (1993a) re-group themeasurement$or each indicator,
rather than forming one set of groups and comparing ttetistscs to indicator
variations over the sangroups. Teso et. al and Nightadg and Bianchi base
their results on region-basedatstics and indicator valueBom the same
regions.

The cited studiespproach dta compilation in one of two ways. These
can be identified as theell-orientedapproach and theegion-orientedapproach.

The well-orientedapproach, taken by Burkart and Kolpin, by Chen and
Druliner, and by Baker et al. is to select a relatively small number of wells to
represent a each region or gmjti Measured vations in constituent
concentration from @il to well are compared to variations in the characteristics
of the wells and theirusroundings. Barringer et al. (1990) point out that results
from such studies can be biased due atigpautoorrelation if the wells are too
close together. A well-oriented study requires careful planningtar streening

to assure that the selected wells are typical of the regions where they are located.
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Theregion-orientedapproach is to define a set of regiooalculate two
sets of statistics on the regiensne of vater quality and one of potential
indicators—and stdy the elationships between the two sets of statistics. This is
the method that Teso et al. and Nigh&legand Bianchi applied in their studies
California. In both studies the regions were surveyexisns. In Teso et al.,
the water quality statistics were the binary classification of the sections by
having or not having DBCP detections, the indicator statistics were the soil
taxonomy ectors, and the relationship between the two was analyzed with
discriminant analysis. In Nightingale and Bianchi, the water quality statistics
were arithmetic averages obredictivity or cation and anion concentrations, the
indicator statistics were averages of aquifer and soil permeability, and the
relationships were examined with lineaor@lation coefficientsfor paired
variables and multiple linear regressifmm multiple variables. Helgeson et al.
identified regions by land use, and characterized each by a singlemty
selected water sample. In anothepa® on the results of their groundter
reconnaissance of the midwest, Burkart and Kolpin (1993b) used a GIS to
identify regions—STATSGO soil pgyons (seeChapter 3 or Major Land
Resource Areas—as more or less vulnerable to contawmrnabased on the
frequency that atrazine was detected in wells in those regions.

Region-oriented studies avoid some of the f@ols of welloriented
studies, but are subject to some limitations. Bias due to @uédetion is
reduced by aggreging samples, giving each region equal weight in evaluating

the relationship between indicators and water quality. The potédotiahn
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atypical well to inorrectly characterize a region is reduced (iffisient data is
available) by the contributions of several wells to the description of water quality
in the region. The regional orietion, however, mcludes any study of the
effects of well-specific characteristics such as pumping rates or construction
characteristics. On balance, the regiomdraach was judged moreitsble for

the data available, and the objectives of the study.
2.6.2 Application in Present Work

In this study, the five steps were implemented as follows.

1. Usenitrate to represent the vulnerability of groundwater.

2. Divide Texas into a grid of7.5' quadrangles based on the well-
numbering system used by the Texas Water Development Board (TWDB)
in its GroundWater Data System @dstrom and Quincy, 1992). The
well-numbering system and the quadrangles are descrili&etiron 4.2.

3. Form groups of groundater nitrate measurementsoeded in the TWDB
GroundWater Data System based on the location by quadrangle of the
wells from which the water samples were collected.

4, Calculate statistical estimateseXfceedence pballities, the likelihood
that nitrate concentrations measured in water samples collected in the
guadrangles will exceed selected threshold values.

5. Prepare maps of the quadrangles showing the variation of the exceedence
probabilities for the selected thresholds.

6. Prepare maps of four i@dtor parameters—averageraial precipitation,

average soil thickness, average soil organatter content, and average
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annual nitrogen feitizer sales—and usestepwise multiple linear

regressionto construct a simple linear model of exceedegmrobalilities

based on these indicators.

The italicized words in the list above inchte specific choices made in
the course of this investgion that make it distinct from the general model
described at the beginning of this senti All of these chices will be discussed
in later sections of this chapter.

In addition to the 7.5' quadrangles, five aquifers—the Caki\fdloox, the
Edwards (Balcones Fault Zone), the Hueco-Mesilla @ulshe Ogllala, and the
Seymour—were used as afternate set of regions to divide a subset of the
TWDB data intogroups for an analysisingilar to that peformed on the
guadrangles. The variation of exceedemrebalilities for this subset was
compared from aquifer to aquifer aglas by thdour paameters listed in step
5 above.

The choice of nitratdor study, themethods used to form thet into
groups for analysis, theethods used toalculate the exceedenpeobalilities,
and the use of stepwise multiple linear regression are describ@daipter 4

The data used in the analyses are describ&thapter 3
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Chapter 3: Data Sources and Description

The conclusions that this study presents are basethvstiss calculated
from 46,507 nitate measurements tak&énom 29,485 wells throughout Texas.
Following the methods dlined in Section 2.6, and described in detail in
Chapter4 the spatial variation of the statistics is mapped to identify regions of
high or low vulnerability to nitrate contaminafi. The sptial variation in the
statistics is then compared to the spatial variation of potential water quality
indicators, including soil parameters, averageual precipitabn, and fetilizer
sales, in order to assess the value of these data as indicators of water quality.
Because the structure and limitations of these davagly influence the
choice of the méitods used, this chapter, which describes twa dtself, is a
necessary prelude t6hapters 4and 5, which describe the methodology and
procedures followed in the study. This chaptertams seven sections, one for
each data set used in the study. These data sets can be divided into three groups:
1) Primary data, consisting gfoundvater nitrate concentration measurements
and descriptions of the wells where theundvater was collected for
testing. The nitite data are described$ection 3.Jand the well data are
described irSection 3.2.
2) Data to be considered as potential indicators of water quality. These include
soil thickness and organic content describedSaction 3.3 annual
average precipitatn, described inSection 3.4 and average annual

nitrogen fertilizer sales, describedSection 3.5
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3) Independenmneasurements of nitrate and herbicides, used to test assumptions
made in the study. These incluseasurements of nitrate jpublic water
sources collected by the Water Utilities Division of the Texas Natural
Resource Conseation Commission, described thection 3.6 and the
first year's results of the U.S. Geologicaln&y's reconnaissance of
nitrate and herbicides igroundwater in the Midwest, described in

Section 3.7.
3.1 NTRATE MEASUREMENT DATA

The nitrate measurements used in thislgtcome from the Texa&/ater
Development Board's (TWDB) Groundter Data System @dstrom and
Quincy, 1992). Thistatewide database contaipBydscal descriptions of wells
and their surroundings in Texas, and levels @ncital constituents measured by
a variety ofpublic agencies. The TWDB maintains the database to characterize
the quantity and quality @roundvater availableitroughout thetste, in sipport
of the preparation of the Texas Water Plan (TWDB, 1994).

For every nitrate measurement listed in threuddwater Data System as
of October 1993—a tal of 62,692 @tabase rewds—the dta fields listed in
Table 3.1were retrieved for use in this study. Of theagadields, the well ID,
date, and nitrate level have values in alloréds. Many records have no values
for the cdlecting agency or reliability remarks. The values in the flag field are

discussed isection 3.1.1.
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Table 3.1 Nitrate Measurement Data

Name of Data Field Description

Well ID Identification number of well where
collected (see section 3.2.1)

Date Date collected
Agency Collecting agency (e.g. USGS,
TWDB, etc.)
Reliability Remarks Numeric code indicating handling and

analysis reliability
Nitrate Level Concentration (mg/l Ngp of nitrate.

Nitrate Flag Code ("<" or ">") indicating level is
reporting limit rather than measured
concentration

Table 3.2 Nitrate Measurements from Well 5740304

Reported Adjusted
Year Month Nitrate (mg/l NO3) Nitrate (mg/l N)
1966 4 <04 20.10
1966 12 <04 20.10
1967 6 14.0 3.17
1968 6 12.0 2.71
1968 7 135 3.05
1971 6 8.0 1.81
1972 5 8.0 1.81
1974 3 5.9 1.33
1976 8 4.7 1.06
1980 3 3.9 0.88
1986 6 2.13 0.48
1991 8 0.44 20.10
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Nitrate concentrations in the TWDB database are listed as mg/l nitrate
(nitrate-N(B). However, unless otherwise noted the values used in this study's
statistical analyses andpated here are in equivalent values of nitrate as
nitrogen (nitate-N), the units used in EPA regulations. 1 mg/l nitrate-N equals
4.42 mg/l nitate-N@. Each nitrate-N@ value in the data set wasrwerted to
an equivalent nitrate-N value. To maintain afommn reportinglimit for all
records used in the studyl] values at or below a value 0fL mg/I nitate-N will
be treated as@.1 mg/l. A nitate concentration greater tha@rl mg/l wil be
considered a "detection" and concentrations less than or equal to this value will
be considered to be "below detection limit." As an illustration of thiwersion
and adjustmenftlable 3.2shows the nitrate measurements listed in the TWDB
databasdor well 5740304 and the adjusted values used for analysis in this study.
Of the twelve measurements shown, nine are considered detections of nitrate and

three fall below the detection limit.

3.1.1 Nitrate Reporting Limits

The flag field in a nitrate measurement gt may be blank or may
contain a "<" or ">" character. A blankauld indcate that the value listed for
nitrate concentration in the nitrate level field is the actual value measured in the
water; a "<" or ">" indicates that the value is a detection porteng limit,
rather than an actual value. The ">" character appeared 5 times in the retrieved
data. The "<" character appearstiim?7 (6.5%) of the records. A value of 0.40

mg/l nitrate-N@ (approxmately equal to0.1 mg/l nitate-N) appears most

frequently as a reporting limit, as the bigtam inFigure 3.lillustrates. (Not
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shown in the figure are 403 records witletection limits greater than
1 mg/l NGg.)
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Figure 3.1 Reported Detection Limits for Nitrate

Although a blank in the flagdld should indcate that the nitrate level in
the record is a trumeasured concentrati, the number of occurrences of some
values suggests otherwiseigure 3.2shows a histogram of nitrate levels below 1
mg/l nitrate-N@ in records with blank flagiélds. The valu®.4 appears 9,793
times in the58,640 records with blank flagefds. It seems very unlikely that
17% of the vater measurementsparted in this databasén@uld have eactly
this value. Since 0.4 is also the most common repofimiy value, a much
more plausible explanation of this high incidence would be that the nitrate

concentration in many of these cases was below 0.4 mgdterittGg, and that

the "<" flag was omittedrom the record. Bcause of the amipiousmeaning of
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"0.4 mg/l nitate-NQg," this study vill treat all ocarrences of this value as

meaning "less than or equal to 0.4 mg/l nitratesNO
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Figure 3.2 Reported Nitrate Concentrations

3.1.2 Sampling Period

The records retrieved from the TWDRtdbase indicated sampling dates
from 1896 to 1993. The histogram iAgure 3.3 shows the number of
measurements taken in each year. As will be shown in the discussion of the
results of this study i@hapter 6there has been a slight increase over time in the
amount of nitatefound in Texas groundater. In order to reduce the egts of
this increase on the data, thedst was confined toneasurements takeduring
the years 1962 to 1993. This period was chosen in paduse of the sharp

increase in the number of nitrate samples collected perfygarl962 onward.
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Omitting nitrate measurements prior to this date retained a substantial majority
of the database in theusty while removing the measurements least likely to be

representative of the present condition of Texas groundwater.
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Figure 3.3 Nitrate Measurements Reported by Year

3.1.3 Measurement Record Accuracy

Because the nitrate measurementsmed in the TWDB dtabase come
from a varety of urces, they do not conform to a uniform set dcdliqy control
standards. In fact, there is evidence in the datadggest that many values may
be questionable. As the preceding section describes, it appears that a "<" flag
was omittedrom many records in theathbase. In addan, 140 records indate

nitrate concentrations oveb00 mg/l NG, a suspiciously high level.

(Concentations of 500 mg/l have been found iaters in the unsaturated zone
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below irrigated oops, and levels over 1000 mg/l have been found in pools in the
parts of Carlsbad Caverns where bats roost (Hem, 1989¢ertssunlikely that
concentrations this high are representative of nagmalindvater.) 51,329 of

the 62,692 nitte reords retrieved from the TWDB atlabase had blank
reliability remark fields; while thisprovides no grounds for excluding the
records, it is not a ringing endorsement either.

In spite of these reservations, thisidst has taken an "innocent until
proven giuity" approach to theneasurement recds. The dta were included in
the study "as is" unless subdgiah evidence indicated that theyhauld be
excluded. As shown ifiable 3.3 records were excluded i€liability remarks
indicated questionable collection or handli if no record could be found of the
well from which the vater was collected, if the well had bad location data (see

following section), if the reported value was "less than" a threshold greater than

Table 3.3 Excluded Measurement Records

Reason Criteria # Records Excluded
Reliability Remarks = 01, 02, or 03 7,020
Well Data No well record 11
Well Location Well mis-located 418
Lower threshold flag = "<" and 407
nitrate > 0.45 mg/l N@
Upper threshold flag = ">" 5
Collection Date Year < 1962 9,087
Total Excluded 16,185
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0.1 mg/l nitate-N(0.45 mg/l N@), if the reported value was "greater than" any

threshold, or if the measurement was takeforeel962 (see preding sectin).
These exclusions left 46,507 @ite measurement reas in the study. This set
of nitrate measurement re@cs wil be called the "base data set" in the remainder

of this document.
3.2 WELL DATA

The dataproviding physcal descriptions of the wells included in the
study comes from theamme TWDB database as the nitrate measurement data.
For each welfor which a nitate measurement was oceded—a ttal of 38,740

database records—the data fields listedable 3.4were retrieved.
3.2.1 TWDB Well Numbers

TWDB has adopted a system of identification numii@rsvells in Texas,
based on the location of the wellgpeessed inatitude and dngitude. The
following description andrigure 3.4explain the numbering system.

[The numbering system] is based on division of the state into a
grid of 1-degree quadrangles formed by degreektdtide and
longitude and the repeated division of these quadrangles into
smaller ones as shown...

Eachl-degree quadrangle is divided into sixty-four 7-1/2-minute
guadrangles, each of which farther divided into nine 2-1/2-
minute quadrangles. Eadhdegree quadrangle in th&a® has
been assigned an identification number. The/2-minute
guadrangles are numbered consecutively from left to right,
beginning in the upper-left-hand corner of the 1-degree
guadrangle, and the 2-1/2-minute quadrangles witlaich7-1/2-
minute quadrangle are similarly numbered. The first 2 digits of a
well number identify thé.-degree quadrakg the third andourth
digits, the 7-1/2-minute quadrdegthe fifth digit identifies the 2-
1/2-minute quadrangle; and the last two digits identify the well
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within the 2-1/2-minute quadrangle. (Nordstrom and Quincy,
1992)

Table 3.4 Well Description Data

Name of Data Field Description

Well ID Identification number of well (see
section 3.2.1)

Aquifer Code Alphanumeric code for aquifer or
geologic unit associated with well

County Numeric code for county where well is
located (FIPS code)

Latitude Latitude of wellhead location (DMS)
Longitude Longitude of wellhead location (DMS)
Location Method Numeric code indicating accuracy of

latitude and longitude

Depth Depth of completed well from land
surface (feet)

Depth Method Alphabetic code indicating source of
depth measurement

Altitude Elevation of land surface at wellhead
(feet above mean sea level)

Altitude Method Alphabetic code indicating source of
altitude measurement

Primary Use Alphabetic code indicating primary
purpose served by well

The TWDB well-numbering syem will be usedHhroughout this report

not only for wells and well locations, but aldor numbering 1 _, 7.5, and 2.5'
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guadrangles used to divide the st&be analysis. Well number5740304 is
located in 1_ quad 57, 7.5' quad 5740, and 2.5' quad 57403.
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L ocating Well 5740304
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3.2.2 Location Accuracy

The latitude anddngitude of a well listed in the database do not perfectly
represent the true location of that well. Different location hods have
different degrees of precision and accuracy. The TWD&u@lWater Data
System assigns a numerical code to each well lmtatndcating the reliability
of the given coordiates. The meanings of these codes are summarized in
Table 3.5 which also lists the number of wells and associated measurements

falling into each accuracy group.

Table 3.5 Location Accuracy Codes

Code Accuracy # wells # measurements
1 + 1" 12,180 22,049
2 + 5" 2,832 4,801
3 + 10" 3,814 4,936
4 +1 12 17
5 * 5,628 7,412
none unknown 4,779 7,260

*—|atitude and longitude are given for center of 2.5' quadrangle
A location mehod code of 5 indates that the given latitude and
longitude are for the center of the 2.5' quadrangle, rather tharethigself. The
TWDB states that this is a tguorary measure, necessary to include wells listed
in an older database that did not require latitude anditude for vell records.
Nearly 20% of the wlls included in the sty (and 16% of the nitrate

measurements) can be located only by 2.5' quadrangle.
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3.2.3 Selected Aquifers

Wells and nitrate measurements wgreuped for &tistical and spatial
analysis primarily by their location in the5' quadrangles numberadcording
to the system described $ection3.2.1 A subset of the wells and measurements
selectedor further examination werggrouped by assdation with five aquifers,
the Carrizo-Wilox, the Balcones Fault Zone of the Edwards, the Hueco-Mesilla
Bolson, the Ogllala, and the Seyour. The TWDB desigates these as Major
Aquifers, meaning that thewgply "large quatities of water in large areas of the
State" (Ashworth and Flores, 1991).

The field "Aquifer Code" in the Texas Groundwer Data System "is
adopted from U.S. Geolaal Survey's WATSTORE Rta File. The code
consists of three digits designating the geologic Era, System, and Series followed
by a four or five [chacter alphabetic] code designating the aquifer(s) or
stratigraphic unit(s)" (Nordstrom and Quincy, 1992).

For example, the code "124WLCX" refers to the Wilcoso@p, which
belongs to the Cenozoic Era, the flay System, and the Paleocene Series. The
code has been modified to describe wells in @undiis sttings, or which draw
waterfrom more than one faration or aquifer (Nrdstrom, 1994). For example,
the code "110AVQW" refers to a comhbtion of alluvium, Queen City Sands,
and the Wilcox Group.

Based on the aquifer delineation criteria described by Ashworth and
Flores (1991), and geologic descriptions from the Geologas/f Texas (BEG,
various years), wells were assigned to aquifeupsaccording to the TWDB

aquifer codes listed iffable 3.6 Note that a well was assigned to an aquifer
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group only if the TWDB code assiated it with a singldormation or aquifer. A

well with the code I10AVQW" was not assigned to the Carriblcox,
because it is associated with alluvium and the Queen City Sands as well as the
Wilcox Group. The number of @lls and measurements associated with these

aquifers are summarized irable 3.7.

Table 3.6 Aquifer Codes

Aquifer TWDB Codes
Carrizo-Wilcox 124CRRZ
124WLCX
124CZWX
124CZWXA
Edwards (Balcones Fault Zone) 218EBFZA
Hueco-Mesilla Bolson 112HCBL
112MSBL
Ogallala 1210GLL
Seymour 112SYMR

Table 3.7 Wells and Measurements in Selected Aquifers

Aquifer Wells Measurements
Carrizo-Wilcox 2292 4597
Edwards (BFZ) 412 1691
Hueco-Mesilla Bolson 404 1908
Ogallala 3483 4430
Seymour 1993 2526

The five aquifers are shown iRigure 3.5. The map was created by
combining the outlines of the aquifei®m five GIS coverages prepared by
TWDB, and represents that agency's estimate of the extent of the aquifers on
surface and the limits of the uqmosed (downdip) regions that provide usable

water. Brief descriptions of the aquifers follow.
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Carriz o-Wilcox Aquifer. "The Carrizo-Wilcox aquifer includes the Carrizo
Formation and the entire Wilcoxr@up. It extends across théagfrom Mexico

to Louisiana" (Ashworth and Flores, 1991). The Carrizonfédion consists
primarily of quartz sad, feldspar, and sandstone (BEG, 1974a and 1968). The
Wilcox Group consists pmarily of quartz sad, mudstoneglay, and silt (BEG,
1974 and 1968). The TWDB aquifer codetestedfor this aquifer group are
"124CRRZ" for Carrizo Sand, "124WLCX" faWilcox Group, "124CZWX" for
Carrizo Sand and Wilcox Gup—Undifferetiated, and 124CZWXA" for
Carrizo Wilcox Aquifer. (Norstrom and Quincy, 1992).

Edwards Aquifer (Balcones Fault Zone)."The Edwards (BFZ) aquifer consists

of all the unitsformations and other members below the Del Rio Formation and
above either the Glen Rose Limestorw, when it is present, th&alnut
Formaton." (Ashworth and Flores, 1991). ThelBones Fault Zone of the
Edwards Aquifer is made up of a variety of limestdoemations with some
included dolomite and shale (BE®74a and 1974b). The TWDB aquifer code
selectedfor this aquifer group is "218EBFZA" for Edwards aAdsciated
Limestones—Balcones Fault Zone.

Hueco-Mesilla BolsonAquifer. "The Hueco-Mesilla Bolson aquifer consists of
Cenozoic alluvial and bolson deposits that occur within the valleys that flank the
Franklin Mountains; and extembrth and west into New Mexico, and south into
Mexico... Although hydrologally connected, the aquifer does not include the
overlying Rio Grande alluvium." (Ashworth and Flores, 1991). The Hueco and
Mesilla deposits include alluvium and "fluviatile deposits of clay, silt, sand and

gypsum in bolsons" (BEG, 1993). The TWDB aquifer coddectedfor this
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aquifer group are "112HCBL" for Hueco Bolson Deposits and "112MSBL" for
Mesilla Bolson Aquifer.

Ogallala Aquifer. "The Ogallala aquifer consists primarily of the Ogallala
Formation and extendw®orth, west, and east intojadent states. Thieoundary

of the formation is mappedailg the eastern Highldns escarpment and along
the Canadian River Valley, where tliermation outcop is in comact with
underlying fomations of Cretaceous, Triassic, or Permian age. The southern
extent is placed at the estimatémtmation pintiout” (Ashworth and Flores,
1991). The Oagllala Formation consists of "fluviatile rsd, slt, clay, and gravel
capped by caliche" (BEGL967). The TWDB aquifer codeeslectedfor this
aquifer group is "1210GLL" for Ogallala Formation.

Seymour Aquifer. "The Seymour aquifer occurs in lated, eoded alluvial
remnants in north-central Texas. The areabndated are based omrface
extent, well development and usagéonsequently manynsaller remnants that
providelittle water or are not developed, are not mapped" (Ashworth and Flores,
1991). The Seymour Fmiation consists of "Thick deposits... mostlyndasity
orange-brown to red, thick-bedded, massiveally with large-scale cross-beds
and gravel" (BEG, 1987). The TWDB aquifer coddestedfor this aquifer

group is "112SYMR" for Seymour Formation.
3.2.4 Well Description Accuracy

In addition to the location of the well, the accuracy of a well's depth and
aquifer code are of particular interest to thiglgt The histogram of &l depths
less than 200efet shown irFigure 3.6illustrates the ovetandance of reported

well depths equal to zero or integer multiples of 10 feet. Well depths are often
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reported by drillers or well owners, who may not alwaypoed to @ta requests

with scientific precisin. Although the TWDB GrounWater Data System Data
Dictionary does not say so, the large number of zero deptguests that zero

may mean "no data" in many cases. The assignment of aquifer codes usually
comes from a geologist's integpation of driller's logs, dirom dataprovided by

an agency other than the TWDB, such as the U. S. Geologicatysor various

state water districts, tharovide well data to the TWDB. Thiprocess is not
under a uniform cality-control program, and is c&inly subject to somerers.
However the number of erroneociassifications isould be expcted to be small

in comparison to the database as a whole (Nordstrom, 1994).
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Figure 3.6 Well Depths (less than 200 feet)
The well description data included in theudy, like the nitrate
measurement data, were accepted "as igiouitmany exclusions. This does not

mean that the data is consideredoefree, but rdects the belief that the

73



guantity of data is largeneugh that individual errorsitivnot significantly effect
the study's conclusions.

Well description reords were excluded from the study if theellg
latitude anddngitude lay outside the quadrangle indicated by its ID nurf2€r
records), or if no niate measuremenfsom that vell were left in the nitrate
measurement table after the deletion of unsuitablerdsc (9,485 records,
including the mis-located wells). These deletions &255 vell description

records in the study.
3.3 IL DATA

The soil data used in thisusly comes from the U. S. Depawent of
Agriculture's State Soil Ggraphic tabase (STAFGO) (USDA,1993). This
rather complex data set has two major ponments: maps—represented in a
GIS—and several related database tables. Thidystraws dta from the
STATSGO map of Texas and threelated database tables, the map unit,
component, and layer tables. Both the map and the tables are stored and
manipulated in Ardhfo. This fction describes therganzation of STATSGO
data and the way that valus two soil paameters, soil thickness and average
soil organicmatter content, were extractébm the ctabasefor use in this

study.
3.3.1 STATSGO Map and Data Structure

STATSGO maps are corgd from many sources, including soil survey
maps, county andate general soil maps, state major landuese area (MLRA)
maps, and LANDSATIimages. The soigroups shown in these sources are

transferred to USGS 250,000-sale base maps and digitized. The basic spatial
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unit of orgafizationfor STATSGO is themap unif a combination of associated
phases of soil series with a minimum size ppaxmately 6.25 kn?. A map
unit is identified by a code (Map Unit ID or MUID) consisting of the two-
character bbrevation of the state's name and a three-digit nunffloerexample,
TX071). Map units also haveames reflecting the sogroups they cadin (for
example, TX071 is amed "Brackett-t®xves-Real”). The map units are not all
contiguous; the map of Texas tams 4031 polygon<lassified into 632 map
units, so on the average a Texas map unit is made up of six discontiguous
polygons. Of the 632 map units in the ST3FO dtabasefor Texas, one
(TX631) has no asstated poygons, and one (TXW, theatergroup) has no
associated soil parameter values. The remaining map units range froare®
km?2 to 21,500 knd, with an average area of 1,082 %and a median area of 570
km2. The histogram iffigure 3.7shows that a substantial majority of the map

units cover areas of less than 1,0002km
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Figure 3.7 Map Unit Area Histogram
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The relationship between the pgbns, map units, analated tables is
illustrated inFigure 3.8and described in the following paragraphs. (The map
units and data shown Figure 3.8are made up for purposes of illustration.)

The map units are made up admponentsalso called "soil sequences,”
or "soil series.” Although the STAGO map does not show cpanents, they—
like the map units—are horizontal divisions of the eartiffase, and the area of
a map unit is the sum of the areas of the componentstaiosn Each map unit
may contairfrom 1 to 21 components. In Texas, map unitda&ionan average
of 9 components. A component is uniquely identified by a map unit ID and a
sequence number. STATSGO assignspéOpeties to the comonents, and
stores
their values in the linked tables, including the component table. In the
component table, the area of a component is expressed as a percentage of the
map unit area.

The components, in turn, are made uplafers which are vertical
divisions of the soil. A component is a sequence of from 1 to 6 soil layers. In
Texas, components ct@in an average of 3 layers. A layer is uniquely identified
in the table by the map unit ID, the sequence number, and a layer number.
STATSGO assigns 2fropeties to each layer, and stores their values in linked
tables, including the layer table.

The soil thickness, organic content, and bulk density values used in this
study are stored in the layer table. All of these tjtiam are &pressed as

ranges, with maximum and minimum values listed in the table. For example, the
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minimum depth of the top layer in a component is zero, and the maximum depth

of the bottom layer in a component is equal to the thickness of the component.
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Polygon Attribute Table

Map Unit Table

1 TXO001 2160
2 TX002 2843
3 TXO001 1469

Poly MUID Area

MUID Area
\ TX001 3629
) TX002 2843

STATSGO Map

Polygon 1
Map Unit TX001

Polygon 2
Map Unit TX002

Polygon 3
Map Unit TX001

Component Table

MUID Seq# Comp% Props
TX001 1 20 -
TX001 2 24
TX001 3 56
TX002 1 48
TX002 2 52
Layer Table
MUID Seq# Lay# Mindep Maxdep Props
TX001 1 1 0 6 :
TX001 1 2 6 17
TX001 1 3 17 22
TX001 2 1 0 8
etc.

Figure3.8 STATSGO Map and Data Organization




3.3.2 Using STATSGO Data

Figure 3.9shows excerpts from the STSGO map of Texas, giving
some idea of the spatial structure of the map units. The area falling in the 1_
guadrangle between 30_ and 31 laitude and98 and 99 W longitude (1_
guadrangle number 57 in the TWDB well-numberingtesyg is divided into
roughly 140 polygons, which belong to 18 map units. Thicsed 7.5
guadrangle (number 5740) dams parts of two map units, which have
identification codes "TXW" and "T@71." TXW is the code foall bodies of
water in the state (in this case, part of Lake Travis), an@7IXs the "Bracétt-
Purves-Ral," map unit . The soil series (also called "ponments") that make up
TXO071 are listed imable 3.8.

Table 3.8 extractedrom the component table, shows, for example, that
the Purves soil series makes up 13% of map unit TX07dble 3.9 extracted
from the layer table, shows values for minimum and maximum layer depths in
inches and minimum and maximum orgamaterial content . Theupves series
consists of three layers, which are 12, 2, and 6 inches thiclectesgly. The

total depth of the Purves series is thus 20 inches.
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Quadrangle 57 (1°)
Map Unit Polygon Boundaries

Quadrangle 5740 (7.5"
Map Unit Polygons

B xXw (water)
I TX071 (Brackett-Purves-Real)

Figure3.9 STATSGO Map Units



Table 3.8 Soil Series in Map Unit TX071 "Brackett-Purves-Real"

Seq.# Seq. Name Comp %
1 BRACKETT 28
2 BRACKETT 12
3 PURVES 13
4 REAL 7

5 REAL 3

6 ROCK OUTCROP 3
7 ROCK OUTCROP 3
8 COMFORT 6
9 BOLAR 4
10 DOSS 4
11 KRUM 4
12 ALEDO 5
13 OAKALLA 2
14 GRUENE 1
15 ECKRANT 2
16 BOLAR 1
17 SUNEV 1
18 TARPLEY 1
-- TOTAL 100

Table 3.9 Layers in Purves Component of Map Unit TX071

sequence layer min. max. min. max. min. max.
number number depth  depth  organic organic bulk bulk
matter matter density density

(inches) (inches) (%) (%) (g/cm3) (g/cmd)

3 1 0 12 1 4 1.25 1.45
3 2 12 14 1 2 1.25 1.45
3 3 14 20 0 0 0 0
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Calculating the averagerganic material contenfor the layer requires
more computation than the layer thickness. Organic matterpiessed as a
percentage of soil mass, and must be multiplied by the bulk density of the soil to
produce an organic mass density. Each layer, the averaggganic content
and bulk density can be estimated as thdpwint between the minimum and
maximum values (2.5%, 1.5%, and 0% orgamiatter, and1.35, 1.35, and 0
g/lcm3: respectivel). Multiplying these values by the layer thicknesses and
summing over the layers produces atineste of theorganicmaterial per unit

area in the component.
n

_(Omin. + omax)i (Pmin. + Pmax)i
M= bj

2 2 (3-1)

i=1
where M is the density of organiatter (g/crd) for the component, jkis the
thickness (cm) of the layer, o is the weight percentage (by weight) of organic
matter in the layem is the bulk density (g/cR) of the layer, and n is the number
of layers in the component. Adtor of 10 is used to convert g/érto kg/n?.
Table 3.10shows how the organic content in the Purves seriecalaslated to
be 11.32 kg/A. Note that the organimatter contenfor the component is
expressed as a density by area, rather than vol@oaube th@rganic content

has been integrated over the depth of the soil.
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Table 3.10 Derived Values for Soil Organic Content in Purves Series (Map Unit

TX071)
sequence layer thickness  mid bulk mid organic
number number density organic content
(cm) (g/lcmd) matter (%) (kg/m?)
3 1 30.5 1.35 2.5 10.29
3 2 5.1 1.35 1.5 1.03
3 3 15.2 0 0 0.00
3 all 50.8 -- -- 11.32

Table 3.11 Soil Series Parameters for Map Unit TX071

Seq. # Seq. Name

Comp %

Thickness Avg. om
(inches) (kg/m?)

1 BRACKETT 28 60 23.26
2 BRACKETT 12 60 23.26
3 PURVES 13 20 11.32
4 REAL 7 36 9.07
5 REAL 3 36 9.07
6 ROCK OUTCROP 3 80 0

7 ROCK OUTCROP 3 80 0

8 COMFORT 6 20 4.44
9 BOLAR 4 44 18.86
10 DOSS 4 48 13.03
11 KRUM 4 72 28.61
12 ALEDO 5 20 5.83
13 OAKALLA 2 60 11.18
14 GRUENE 1 80 0

15 ECKRANT 2 30 17.86
16 BOLAR 1 44 18.86
17 SUNEV 1 72 22.69
18 TARPLEY 1 22 11.02
unit TX071 100 48 15.77
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Table 3.11shows the calculated soil thicknesses arghnic matter for
the components of TX071. The map unit values shown on the last line of
Table 3.11are area-weighted averages, calculated by summingrturicts of
the parameter values and the @ament percentages. Although values can be
calculatedfor the soil paameters at both cqmnent and map unit levels, only
the map unit averages can be located on the SIXO map. For example, the
Purves series makes up 13% of map unit TX071, but SI3Q provides no
information dout which 13% that is. For this reason, the SB80D dita canot
properly be applied to any areas but the STATSGO map units.

STATSGO's elativelypoor sgtial resolution presents a difficyitoblem
for users of the ata. In this stdy, the vell and water quality data acgganzed
on spatial units 02.5' quadrangles, which are muchadler than STABGO map
units. Figure 3.10shows the relative sizes of map unitd74, a 1 _ quadrangle, a
7.5' quadrangle, and a 2.5' quadrangle. Map unit TX071 covers about 6,700
square kilometers; in the same part of the state, a 1 quadrangle dowets a
10,000 square kilmeters, &.5' quadrangle covers about 166 squaremiers,
and a 2.5' quadrangle covers about 18.5 squarmétkrs. A2.5' quadrangle is

roughly the same size as the Oakalla component of map unit TX071.
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Quadrangle 57 (10)

Quadrangle 5740 (7.5)

Quadrangle 57407 (2.5)
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W Map Unit TX071

Figure 3.10 Map Unit TXO71 with
Quadrangles for Size Comparison
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Applying map unit values to areas other than the map units themselves—
such as 2.5' quadrangles—requires the user to assuraéia djstribution of the
soil series within the map units. The simplest assumption, and the béabkey
without requiring suplementary data, is that the area-weighted averages of soil
parameter values are tmimly distributed propéies of the map units. This
assumption contradicts fact, and the SB&IO user's guide spifically warns
against it.

In spite of this warmig, this study employs just this assumption. This use
of the data can be justified on a varietygobunds. First, this study seeks to
describe the variation of water qualityough Texas using aathbaserganzed
in 2.5' quadrangles. The STAGO map units arerganzed in different
divisions of the land surface and the two systems are irreconcilable; one must be
compromised. Since the well data are pmyn@ompromise of the STATSGO
data must be tolerated. ®aclly, the map units, by their nature, are groups of
associated soils, so the variation in swidpeties between map unitaight to be
greater than the variation within map units. Thirdly, since this is a statewide
study, it is reasonable to assume that the errors introduced by mishandling the
STATSGO dita small aough that they W not significantly influence the
conclusions drawn over so large a study area.

Using this compromise, soil parameters will be estimated by the
following procedure. Any region (e.g., a 7.5' quadrangle) lying entirely within
the boundaries of a STAIGO map unit Vil be assigned the average parameters
for that map unit. Any region that crosses SB&IO map uniboundaries will

be assigned soil parameter values equal to the area-weighted average of the
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values associated with thmn-water map units that lie within the regi. For
example, since quadrangle 5740 is composed entirely abvérw(TXW) and
portions of map unit TX071, it would be assigned values equal to the averages

for TX071.

3.3.3 Range and Distribution of Soil Parameter Values

The average soil thickness in the noat&r map units rangefsom a
minimum value of 22.4 inches to a maximum of 88 inches. The area-weighted
average of the soil thickness is 65.2 inches, and the median values is 69.9 inches.
The histogram-like chart iRigure 3.11shows the map unit area associated with
ranges of soil thickness in 5-inch bins. The distribution of soil thickness over the

surface of Texas is illustrated igure 3.12.
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Figure 3.11 Soil Depth Histogram
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The average soil organic content in the non-water map units ranges from a minimum
value of 0.76 kg/m2 to a maximum of 74.9 kg/m2. The area-weighted average of the soil
organic content is 16.2 kg/m2, and the median values is 15.1 kg/m2. The histogram-like chart
in Figure 3.12 shows the map unit area associated with ranges of soil organic content in 5-
kg/m2 bins. The distribution of soil organic content over the surface of Texas is illustrated in

Figure 3.13.
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Figure 3.13 Soil Organic Matter Histogram
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3.4 HMRECIPITATION DATA

The precipitation data used in thisidy were copied from, or derived
from data included in Mdrosphere Inc.'€limatedataCD-ROMs (H/drosphere
Data Poducts, Inc., 1994). Thisath set consists of GIS coverages showing point
locations of the observation stations, and database tables listing the daily
observations of climatic daffar the period of record of the TD-3200 rSmary
of the Day Coopettive Observer Netark database of the National Climatic
Data Center (NCDC).

3.4.1 Preparation of Annual Average Precipitation Map

The annual average precipitation map used in thidysts intended to
reflect the variation of expected rainfall across Texas. The objective in
preparing the map was not to produce the best possibléeciiwadof average
annual precipitation at each statj which would require that the entire period of
record be used foeach statin, but rather to produce the bestiraate of the
relative magnitudes of precipitation at different stations, which requires that the
same period be reported for all stations.

This goal sets up an interesting set of conflicting requirements. For any
map, including more points improves theasal resoluton, and for anytime
series, extending the period of record increases confidence inatbelated
average values. Requiring that the period of record beathefsr all stations
means that stations operatifag only a part of the period cannot be included in

the map, so a longer period of record leads to fewer points, and vice versa.
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After a trial-and-error exploation of the data, the following criteria were
used to select the data for the map used in this study:
1. The period of record for the map extends from 1951 to 1980.
2. A station is deleteftom the map if a sequence of than two years is missing
from the $ation's reords. (NCDC considers a year "missing” if it tains a
missing month. A month is "missing"” if more than nine days of data are absent.)

The selected period of rea includes periods of both very low
precipitation (the early-to-mid950s) and very high ecipitation (the early
1970s), and can be considered a reptesee periodfor precipitation in Texas.
Requiring a longer period of record (1951-1990) or &dleg only single-year
gaps resulted imughly 25% redctions in the number of stations included in the
map.

The procedure used to geatr the precipitation map is described in

Section 5.2.3 The resulting map appearsimure 3.15.
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3.4.2 Range and Distribution of Precipitation Data

The Thiessen polygons range igesfrom a minimum area of about 10
km2 to a maximum area of about 10,600%mwith an average area of 2,130%m
and a median area of 1,690 &mThe size of the pgtons is inverselyalated to
the density of gauges and hence to pafon. Polygons arengall aroundcities
and large in the unpofated areas of west TexasFigure 3.16shows the
frequency distribution of Thiessen polygoizes for the study's pmcipitation

gauging network.
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Figure 3.16 Thiessen Polygon Area Histogram

By the reckoning described section3.4.1, average annual precipitation
ranges from a low of 7.8 inches in El Paso to a high of 59.1 inches in Orange.

The area-weighted average precipitationTexas as a whole is 26.8 inches and
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the area-based median is 24.5 inchegdning that half the area of the state
averages more than 24.5 inches oéqgipitation per year and the other half
averages less). The histogram-like diagramFigure 3.17shows how the

Thiessen polygon area associated with the various levels of precipitation.

150,000

100,000

Area (knT)

50,000

0
0O 5 10 15 20 25 30 35 40 45 50 55 60

Average Annual Precipitation (inches)

Figure 3.17 Precipitation Histogram

3.5 FERTILIZER SALES DATA

The nitrate fertilizer application data has gimorest satial resolution of
all the data used in thisusty. Figure 3.18was generatedhfom annual total
fertilizer sales collected nath-wide on a county level by the EPA'sioff of
Policy Planning and Evaluat. Battaglin and Goolsby1995) elated sales
figures for the years 1986—-1991 to county maps of theetdiStates as part of a

project to illustrate nationwide trends in agricultural chemical use with GIS (Mr.
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Battaglin made the fertilizer data used in thigdgt a\ailable to the atmor prior

to the publication of the cited pert). In addion to listing the total number of
tons of fertilizer sold in eachoanty, Battaglin and Goolsby divided the tons of
fertilizer sold by the total area of theunty to compersde somewhator the
range of variation in size obanties. The result is a number that they call "use"
in tons per square mile. For the mapHmure 3.17 six years of use were
averaged foeach ounty. These averages range from a low ofh@aning no
recorded nitate sales in theotinty for the six years, and a high of 18.9 tons per

year of recorded nitrate fertilizer sales per square mile of county.
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3.6 WATER UTILITIES DIVISION NITRATE MONITORING DATA

Nitrate measurements collected by the Water Utilities Division (WUD) of
the Texas Natural Resource Consgion Commission as part of their Primary
Drinking Water Standardswéorcement &orts, were used as an independent data
set to test nitrate vulnerability predictions based on the TWDB data.

The nitrate measurementpagted by the WUD are collected at points of
entry to public water distribution systems, i.e., after whtan mutiple sources
has been mixed and treated. A water system may have several points of entry
and several wells orusface intakes upplying those points of entry.Water
samples from points of entry do not represent individwglsaunless the point of
entry is tied to only one well.

The dataprovided by the WUD include ndte concentrations measured
at points of entry, ideniidations of those points of entry and the wells and
surface intakesupplying them, and the éations of the wells. These were
represented in two database tables and a GIS coverage. The nitrate measurement
table includes the system and point of entry identificatboreach measurement,
along with the dte of sample collection and analysis results. The point of entry
table contains one redd foreach well, listing the well ID, system ID, and point
of entry ID. (WUD well numbers are not the same as TWDB well numbers.
They are based on county andter sipply identifcation, rather than geographic
coordirates.) By linking nitrate concentration to points ofrgnpoints of entry
to wells, and wells to locations, it is possible to tie nitrate concentrations to

guadrangles for comparison to the quademdencerobalilities calculatedrom

100



the TWDB data. Therocess and results of this comparison are described in

Sections 5.&nd6.4.
3.7 HERBICIDE AND NITRATE DATA FROM M IDWESTERN U.S.

Because of the lack of afficient quantity of measurements of herbicides
and other man-made agricultural chemicals in TegEmindvater, it is not
possible to determine whether vulnerability to nitrate isrredated to
vulnerability to other agricultural chemicals in Texas. Howeveroroter to
generalize the results of audy of vulnerabity to nitrate contamination to other
agricultural chemicals, it is necessary to assume some relationship between
nitrate and those other chemicals. The data presented by Kolpirf1&93) is
used to test the rather mild assumption that geologntiitons favorable to a
high rate of detection of elevated nitrate levels will also ber&ble to a high
rate of herbicide detections.

The data were collected P91 from 300 wlls in the Midwestern U.S.
The nitrate and herbicide data were collected as part offam ® chaacterize
the spatial and seasonal distribution of agricultural chemicatgdaondvater,
and to provide dtafor an exploratory tatistical analysis of the influence of
anthropogenic, and geologic and other natueadtdrs on the occurrence of
herbicides (Kolpin and Burkart, 1991).

A full account of the reconnaissance can be found ircitieel references.
The data used here included thepaeed concentrations of nitrate and nine
herbicides or herbicide metabolites (alachlatazine, cyanazine, deethyl-
atrazine, deigpropyl-atazine, metolaclr, metribuzin, prometon, and

simazine), and two geologic descriptors of weltrgundings (depth to top of
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aquifer, and aquifer type—bedrock or unconsatiédl). The use of theath is

explained inSection 6.5.
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Chapter 4: Methods

Any empirical or statistical gproach to groundater vulnerability
analysis proceedsom the assumption that high conceitons of contaminants
are found more often where vulneilél is high than where vulnerability is low.

If a water sipply cortains a detectable concentration of a man-made pesticide,
for example, then that ater sipply must be vulnerable to damination,
because it has become contaminated. If many water samples aré&dakéwo
supplies, and contaminants appear very frequently in the sarfiplasone
supply and much less frequently in samples from the second, one might
reasonably conclude that the first supply is more vulnerable ttarmamation

than the second. Given a large body ditev quality measurementsom
different water surces, it should be possible to gauge the vulnigsabf those
sources to contamination based on the frequency that contaminafasiradden
samples from those sources.

This studyattempts toform a geneally applicable métod for inducing
the relative vulnerability ofgroundvater sipplies from a large body of
contaminant concentration measurements. Théodeis sptial and statistical
in its approach. Measements of contaminant concentration greuped by
their location in specified regions of the sulface, statistical descriptions of the
groups ofmeasurements afermed, and the variation of these statistican
region to region is mapped. Finally, to relate the vulnerability of the regions to

indicator parameters, the variation of the statistics is compared with variations in
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hydrologic, soil, and cdaminant loading parameters mapped over the same
regions.

This chapter describes the mathematicalhoés$ used in the study and
the assumptions that untlertheir use. The chapterasganzed abng the lines
of the six-step outline presented in the last sectioRldpter 2. Section 4.1
describes the rationale behind the use of nitrate asragate for vulnerallity.
Section 4.2describes the criteria used to select thelystregions. Section 4.3
describes the use of GIS and database management sysfems tbe @ta into
groups for gatistical analysis.Section 4.4describes the calculation of statistical
descriptions of the groupeaid, and the assumptionsderlying the use of those
statistics. Section 4.5describes the use of GIS and stepwise multiple linear
regression to form a praxive modelfrom the atistical descriptions of the data
and a series of potential indicatorsSection 4.6describes the use of two
additional data sets taugport the use results based on one body of nitrate

measurements to make more general statements about groundwater vulnerability.
4.1 NTRATE AS A SURROGATE FOR VULNERABILITY

Susceptibility, vulnerabilityandprobabllity of contaminationare related,
but distinct, ideas. For the purposes of this study, a graatedwipply is said to
be susceptible to contamination if it is possifile a cortaminant to reach it,
even if no source exists for that ¢caminant. The wpply is vulnerable to a
particular contaminant if it is susceptible andaurse of the contaminant is
present. The risk of contamination is the likelbd or probaility that the

contaminant is actually present in thgroundvater.  Probaibity, unlike
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susceptibility and vulnerability can be described by a number. In othresw
proballity of contamination is quantifiable, while susceptibility and
vulnerability are not.

Although proballity of contamination is quantifiable, it is not directly
measurable. Water quality measurements describe the degree to which chemical
constituents are present in water—that is, their concemratnot risk or
proballity. How, then, is it possible toonduct anempirical investigation of
groundvater susceptibility or vulnerability, which maot be quantified, or of
probability of groundwater contamination, which cannot be measured?
Threshold Concentrations. This study esmatesprobabllities of contamination
by calculating the frequency with which threshold concentrations of constituents
are exceeded irgroups of groundater measurements. Thegeobalility
estimates serve asursogates for susceptibity and vulnerability.  Four
thresholds, in mg/I nitrate as rogen, were chosen. The lowest is 0.1 mg/l, the
detection level described iBection 3.1 The highest is 10 mg/l, the maximum
concentration permissible in public wateupplies. Another threshold was
chosen at 5 mg/l, which is one-half the MCL, and triggers increased monitoring
requirements irpublic water applies. Thefourth threshold wasetected at 1
mg/l to indicate the range at which human influences may be suspected. This
last threshold is lower than the level used by Madison andeBr(1985) as
indicative of human influence, but falls in the range they call "transitional,”
possibly indicating human influence. Since thisrkv examines groups of

samples in regions, rather than single wells, itgprapiate to use this lower
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value; consistent exceedences of this threshold are more indicative of
vulnerability than a single exceedence.
Nitrate as Surrogate Constituent. Measurements of thegroundvater
concentrations of solvents, herbicides, PCBs, and atdesiral and agricultural
chemicals are very scarce in Texas. Because of this scarcity, it is not possible to
base a Statewideusty on themeasurements of the chemical constituents, like
atrazine or tolulenefpr which monitoring waivers can be granted. tdasl, the
study is based on roughly 46,00@asurements of nitrate concentration in Texas
groundvater. Although waivers cannot be granted foratérmonitonng, nitrate
is a potential wrrogate indicator of contamination by agricultural chemicals, a
major group of regulated constituents.

Nitrogen fetilizers are very frequently applied to the santeps as
pesticides, so it is reasonable to assume that if nitrate can nfigratéhe crops
on the surface to the water in the sufsce, so can the pesticides. The presence
of elevated nitrate levels groundvater is assumedr purposes of this study, to
indicate that a viable pathway exifitsm the surdce, where most nitratewwces
are located, to thgroundvater. The regulations themselves include elevated
nitrate levels in the list of factors that can be considered in a vulnerability
assessment for pigsdes. Because nitrate has been widely measiarethany
years (the first nitrate measurement in the database on whichutheistbased
was taken in 1896) a sidfent body of measurements exists torm the basis of

an empirical study.
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Nitrate is not a perfect indicator of wvulnerability to agricultural
chemicals, however. Natural mineralusces exist, as do other anthropogenic
sources not necessarily related to chemical apphicasuch as sép systems
and cattleprodwction. Although this study assumes elationship between
vulnerability to nitrate contamination and vulnerability to contamination by
agricultural chemicals, its main task is one of identifying areas vulnerable to
nitrate contaminatin. If a swecessful methodology for identifying areas
vulnerable to nitrate, then the same hoels can be agipd to other chemicals as

monitoring results become available.
4.2 IDENTIFICATION OF ANALYSIS REGIONS

The selection of analysis regions defines the\st As following gctions
will show, the métods used in this studyett the regions as homogeneous
bodies, lumping all data and all results by their association with the regions
selected in the first step of tpeocess described fBection 2.6 Comparisons are
made between regions, but not within them.

A frequently overlooked part of the DRASTIC pollution pdtah
evaluation system (Aller et al1,987) is the authors' reconendation that the
numerical rating system be appliedhiydrogeologic settingsvhich they define
as "mappable unit[s] with common hydrogeologic eleéeristics.” In other
words, the DRASTIC ating system sould be aplped only to regions that can
properly be chacterized by a single ratg. The four studiegited by the
General Accounting OfficeGAO, 1992) asattempts to validate DRASTIC with

field data use @aunties as the mapping urfdne also usesrsaller units in some
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cases). Three of these studies find littterelation between DRASTIC ratings
and groundwter contaminatin. The poor coelation may be due in part to the
inapproprateness of auntiesfor use as mapping units. The use of d¢mmas
mapping units may also account for tlaek of wrrelation between fertilizer
sales and the oaoence of nitate ingroundvwater shown in the example in
Chapter lof this report.

In this study, the principal analysis regions are 7.5' quadrandtesh
guadrangle is characterized by descriptive statistics calculated on the results of
all measurements collectéidm wells in that quadrangle, and no distinction is
made between different parts of a single quadrangle. Maps of the analysis results
show the variation of exceedengeobalilities from one quad to another,
essentially using a single number each quad to characterize the results of the
analysis.

It follows, then, that in selecting a set of regidmsanalysis, the designer
of the study should have some reasonableeetgpion that each region is
homogeneous. At least therhosld be less vaation in water quality and
indicator parameter values within regions than between them. Because of their
spatial compactness, 7.5' quadrangles are assumed to meet this requirement.

Although the regions should be intalty homogeneous, therbauld also
be a reasonable expectation that there will be significant variations between
regions. The scope of the study should bei@efitly large that comparisons of
the descriptive statistidsom region to region W yield meaningful vaiations.

Because this stly includes the entirgdate of Texas, it is reasonable to assume
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that 7.5' quadrangles from widely dispsr parts of the state will show
significant differences in summary statistics of water quality measurements.
Certainly, differences in climate, gegly, and humaactivities are greatrmugh

that they can be detected in 7.5' quadrangles across Texas.

Since the studymethod is matistical, there mould be enough
measurements available in the regions to make mghanhi datistical
calculations possible.  This requirement must be balanced against the
requirement that regions be homogeneous. Small regions will be more
homogeneous, but will contain fewer measurements, reducingttielence in
the values of statistics calculatéwm thosemeasurements.2.5' quadrangles
were considered and rejected agigtregions after the number wleasurements
in the two sizes of quadrangles were compared.

For reasons that will be explained$ection 4.4 quadrangles with fewer than 12
measurements were not included in the maps or the regression analyses. As the
histograms inFigure 4.1show, about 1.5% of the 2.5' quadrangles (597 of
38,523) have 12 or moraeasurements. More th26% of the 7.5' quadrangles
(1,158 of 4,407) have 12 or mameasurements. Selectid' quadrangles over

2.5' quadrangles increased the numbemefisurements includddr mapping

and regression analysis, and included a much larger proportion of the area of the
state in the study.

Figure 4.2shows a 7.5' quadrangle (number 5740, which has already been
used as an example through@ltapter 3 the nine 2.5' quads it ctains, and the

locations of the wells in those quads that were included in tiny.st51 nitrate
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measurements reded in the TWDB dtabase were takdrom 37 wells located
in this quadrangle. Only one of the 2.5' quads in 5740 has as many as 12
measurements, and if the measurements were more evenly distribated,

would.
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The five aquifers selected form the second set of analysis regions are
assumed to be homogeneous because geologic characteristics vary more between
the aquifers than within them, and because the water in the aquifers mixes
internally much more than between aquifers. The internal homogeneity of the
aquifers will be discussefdrther inChapter 6where the results of the analyses
are presented. The differences in their geologic structure and the separation of
their spatial extents assure that discernible differences cdoubd between
them. The selected aquifers are classified as major aquifers by the TWDB, and
nitrate measurementom wells in each of them are plentiful. The aquifers thus
meet the same requiremenfr selection as analysis regions that thAe'

guadrangles do.
4.3 (ROUPING DATA FOR ANALYSIS

Once the data set has been chosen, and a set of analysis regions has been
selected, the data must be sorted igtoups for tatistical analysis. The
formidable task of forming thousands of records ofatgrmeasurements into
meanngful groups is made feasible byatdbase management systems and
geographic infanation systems. This section describes the principles of these
technologies that are important to this study, and thdicapion of those

principles to the tasks of organizing Texas groundwater data.
4.3.1 Database Management Systems

The database management systems used in tidy sre described in
terms of the relational model. Other modiels database management systems

exist, including entity-relationship, netwk, hierarcical, and objecbriented
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models. The relational model is the bdsisStructured Query Language (SQL),

a widely used systerfor building, maintainng, and using atabases. Atough
INFO, the dtabase management system used in thifystloes not use SQL, the
INFO opeations carried out in this study can be described in terms of the
relational model. Doing so makes this discussion more general, by eliminating
references to commands and syntax meaningful only in INFO.

A relational database isgroup of tablesgach with a unique name. Each
row in a table corresponds to arntignof interest to users of the database, and
contains a fixed number of attributes, which describe that entity. A simple table
of nitrate measurement data might consist of rows containing an ID number for
the well where a water sample was collected, the year, month, and day the
sample was collected, and the nitrate concentration measured in the sample. The
list of attributes in the rows of a database table is calleddhemeof the table.

A table called thea$ will be used as an example. The schemme@hsis
meas-scheme (well-1D, year, month, day, nitrate).

The scheme afmeasdefines the way that nitrate measurements can be described

in this database. Mathematically, the scheme describes the Capesiant of

a set ofdomains where a domain is a set of possible values. The domain of

month, for instance, might be the integer values 1 through 12. Any caticinin

of valid valuesfor all five attributes fits the scheme, whether or not the values

correspond to aractual nitrate measurement. To be included in the table

however, the combination of values must correspond toa@nal nitrate

measurement. The tabieeasis thus a subset of the Cartesian product of the
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domains well-ID, year, month, day, and nitrate. Mathematicians call a subset of
the Cartesian product of a set ofnelins arelation . This is the origin of the
name "relationalfor this catabase model. An individual element of a relation is
ann-tuple or simply atuple. See Korth and Silberschat¥991) or any number

of other database tdodoks for a more conhgte discussion of the relational
model.

Operations on relational databases can be described in many ways. This
discussion will use the tuple relational calculus. A query in the tuple relational
calculus takes the form

{r|PEO}
and returns the set of tuplesuch that the predicate P is trioe r. Predicates
are statementsbaut tuples and theimttributes, which are evaluated as true or
false. Some of the mathematical notations used in the predicates are shown in

Table 4.1.

Table 4.1 Predicate Symbols for Relational Calculus

Symbol Definition

"Is a member of"
"There exists"
"All"

"And"

"Or"

OoOoOood

Attribute values are indicated with notation of fleem r[year], meaning
"the value of the attribute year for tuplé For example, the query

{r |r O measdr[well-ID] = 5740304} (4-1)
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reads "all tuples that are members of the relattm@asand have the value
5740304 for theattribute ‘well-ID."™ In more concrete terms, itueis every
record of ameasurement collectedom well number5740304. The results of
this query, apied to datafrom the TWDB dtabase, are shown irable 4.2.

(Nitrate is given as nitrate-N.)

Table 4.2 Results of Query 4-1

Well-ID Year Month  Day Nitrate
5740304 1966 4 2 0.10
5740304 1966 12 14 0.10
5740304 1967 6 20 3.17
5740304 1968 6 7 2.71
5740304 1968 7 26 3.05
5740304 1971 6 4 1.81
5740304 1972 5 0 1.81
5740304 1974 3 11 1.33
5740304 1976 8 5 1.06
5740304 1980 3 24 0.88
5740304 1986 6 10 0.48
5740304 1991 8 26 0.10

A group of queries can be used to providg¢ador the comparison of data
selected by different criteria. The following queriés, example, show that a
greaterproportion of samples dected in1990 comained nitrate in excess of 1
mg/l than those collected ih964. This point is eamined in more detail in
following chapters.

{r |r O meadr[year] = 1964}

{r |r O meaddr[year] = 1964 r[nitrate] > 1.0}
{r |r O meaddr[year] = 1990}

{r |r O meaddr[year] = 1990 r[nitrate] > 1.0}
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The first query returngll records of nitate measurements taken 1864; the
second returnsll recmrds of nitate measurements taken 1964 that report
concentrations greater than 1 mg/l. The third moth queries returnimilar
records for the year 1990. By counting the number of records returnedasith
guery, it can be found that 400 of 1,32¢asurement&80%) in 1964 and 608 of
1,166 measurements (52%) in 1990 showed nitrate concentrations above 1 mg/I.

The real power of relational databases corfresn their ality to
combine information from multiple tables. If a second scheme is defined as

well-scheme= (well-1D, depth),

sets of wells can be selected on the basis of their deygthnaore importantly,
sets of measurements can be selected on the basis of the depth of tfinemvell
which they were collected, as well as the year in which they were collected. The
attribute well-ID, which is common to both tabl@spvides ameansfor linking
the two tables. Such linking attributes are called "keys." The query

{r |r OmeaddOsOwell (rfwell-ID] = gwell-ID] O gdepth] < 100)} (4-2)
reads "all tuples that are members of the relati@asfor which there exists a
tuple in the relationvell with the same valutor the attribute well-ID and with a
value less than 100 for thatribute depth.” More intuitively, the query wets
all nitrate measurement mcs for which the correspondingeil record
indicates a well depth less thaf0, where "correspondingheans "having the
same well number." More practically, it uensall records of samples dlected

from wells less than 100 feet deep.
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The earlier queriesbaut 1964 and 1990 can be modified to include only

samples collected from wells less than 100 feet deep, like this

{t |t meast[year] = 19640 Oswell (tfwell-1D] = qwell-ID]
(0 9gdepth] < 100)}

{t|t0 meast[year] = 1964 t[nitrate] > 1.000 OsOwell
(t[well-ID] = gwell-ID] O gdepth] < 100)}

{t |t meast[year] = 1990 Uswell (tfwell-1D] = qwell-ID]
O gdepth] < 100)}

{t |t O meaddt[year] = 19900 t[nitrate] > 1.00J OsOwell
(tfwell-1D] = Jwell-ID] O 9depth] < 100)}

The first two queries of this group return records showing that in 1964, 304 of
517measurement$9%) taken from wlls less tharl00 feet deep showed nitrate
concentrations greater than 1 mg/l. The last two queriasre¢cords showing
that in 1990, 210 of 27@easurementd 7%) taken from wlls less thari00 feet
deep showed nitrate concentrations greater than 1 mg/I.

Relational databases are capable ofyitag out much more contipated
gueries than the examples given here, involving more tables, and returning
values for any subset of tlatributes those tables contain. The examples here
illustrate the most important features used in this study.

Because the weliumbering syfem used by the TWDB includes in the
well ID the numbers of th& , 7.5, and 2.5' quadrangles wheach well is
located, queries of the type shown here awodficient to group nitrate
measurements by quadrangle. Similarly, since the well-description data

provided by TWDB includes theames of geologidormationsfrom which the
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wells draw water, queries of the same type will ajsoup measurements by
aquifer.

In general, however, locating wells and wajeality measurements in
regions defined by maps requires operations that cannot be performed by
database management systems aloneufiing and querying ofada by spatial

categories will usually require a geographic information system.
4.3.2 Geographic Information Systems

A geographic infamation system (GIS) stores dathoat the world in
thematic maps or data layers, called coverages, which contain different kinds of
features and infonation. A coverage of Texas, for instance, could show
political features, such a®uenties, orphyscal features such as rivers. These
features would be stored in different data layers, with differafdrmation,
although they occupy theme space on the earthisface. A GIS coverage may
incorpoiate database tables, which describes the attributes of the features mapped
in the coverage.

GISs fall into twobroadcategories, vector and raster. Arc/Info, the GIS
used in this study, has modules for representiaguies in both vector and raster
systems (EBI, 1991). The quadrangles used as analysis regions are ctattru
in the vector system. Raster systems will be discusstter inSections 4.%and
4.6.

A vector GIS represents features as points, lines, or polygons. Points are
represented by a single pair of cooatm values, lines by series of points, and

polygons by closed sets of lines. Lines and polygons can take any shape, and

119



descriptive data can be linked to features of any type. A vector GIS coverage
can contain points only; points and lines; or points, lines, angigpos.
Attribute data can be stordar all types of features present in a coverage, but is
often associated only with the highester atures. Typically, a coverage is
classified by its highest-ordeedture as a point coverage, line coverage, or
polygon coverage.

Features in a coverage can be thought oflaments of a set, like the
records in a dtabase table. Subsets of objects cariob@ed on the basis of
location, attribute values, or a combinai, and set opations such as union or
intersection can be performed on these subsets.

Since attribute values are stored in database tables, subsets of features can
be formed on the basis of attribute values by database queries of the type
described in the last seati. Grouping dta by location requires special
operations unique to GIS.

Figure 4.3illustrates one such operati, the overlaying of polygons on
points. In a vector GIS, a point is a single logatiand can be used to represent
features like wells; a ppyon is a contiguous, bounded area on theaserbf the
earth, and can be used to represent quadrangles. Because the GIS can represent
the topology of points and polygons and thelative locations, it is able to
identify the polygons that pointe within. At the bp, the figure shows a point
coverage containing six points representing wells, and the data table associated
with that coverage—calledpoint attribute table Below the point coverage is a

polygon coverage céaining four quadrangles. The corresponding polygon

120



attribute table is omitteftom the figure. The two coverages are combined in an
overlay operation, and the result is shown at the bottom of the figuezalke

the topology of the point coverage is unchanged, the result of the overlay is the
addition of a new attribute in the point attribute table identifying the quadrangle
in which the wells are located. Wells can nowgbeuped by quadrangle using

ordinary database queries.
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If the polygons havattributes of interest, these can be linked to the wells
by using the quadrangle number as a key to link the point attribute table of the
well coverage to the pgpdon attribute table of the quadrangle coverage. If the
guadrangle coverage has an attribute called "thick” equal to the average soil
thickness (in inches) in the quadrangle, the following query would return all
records for wlls located in quads where the average soil thickness is greater than
60 inches.

{t |t O wellsOOsOquads(tfquad] =gquad] ] gthick] < 60)}

A more complex query, incorpating a third table, could similarly
produceall rewmrds of nitate measurements collectéwm wells located in
guadrangles where the average soil thickness is greater than 60 inches. The
linkage between the topology of a coverage and #tabdse tables containing
the attributes of features in that coverage lies at the heart of GIS. The ability to
represent the results of spatial operations like poitelygon overlays in
database tables greatly increases the value of those tables to investigators trying
to understand the influence of spatially distributed processes.

Polygon-on-polygon overlays, and their use in describing the co-
incidence of different spatially distributed parameters will be discussed in a later
section.

Given a database consisting of two tables, one of nitrate measurements
and one of well descriptions, and a GIS coverage consistiligoofluadrangles,
the methods described in thiscsion are gfficient to extractirom the ctabase

all reacords of nitate measurementom any quadrangle in the coverage. If the
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well description table also includes the names of the aquifers that the wells tap,
the same mébds can also exct all reords of measurementérom those
aquifers. The statistical analysis used to summarize those measurements is

described in the next section.
4.4 FATISTICAL MODEL OF VULNERABILITY

In this study, it is assumed that the concaitn of a chemical
constituent in groundwater is a random function of space and time,
C=Q(x,Yy,z1) (4-3)
where C is a concentration value, x and y are coatdmparallel to theusface
of the earth, z is a verticabordinate, t is time, and the subscript R denotes a
random furtion. The randomness of the @lon means that it is impossible to
predict an exact valudor the concentation, and that a préedion of
concentration can properly be described only as a pidgabunction. This
impossibility can be int@reted as the result ofpgocess governed by chance, or
as a statement of the limits of humiamwledge. These two integiations are
not mutually exclusive, but the latter fits thisidy better because the state of
knowledge about grounaaer is very limited, and that limitation motivates the
study.

If the concentration of a constituent at a point is described bydoma
function, then the concemtion of the constituent in any finite volume of
groundwvater, such as a sample drawn from ellvior analysis, is also described
by a random fuction. At any given moment, a larger volume of the subserf

such as an aquifer or the volume unéath a7.5' quadrangle of the earth's
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surface, contains an infinite number of sample-sized volumes. The concentration
values associated with this infinite collection of potential water samples make up
apopulation which can also be described by a probability function.

If completeknowledge of the popation were somehow available, that is,
if the concentration in every possible sample-sized volume coukthde&n, the

probablity function could be calculated directly. If RfGs the probaitity that

the concentration in a single sample-sized volume selectedch@mafrom the

population is less than or equal to a threshold concentratidheh

Ne
P(G) =N+ Ne (4-4)

where N is the number of sample-sized volumes of water in which the

concentration is less than or equal to the threshold, and the number of such

volumes in which the concentration exceeds the threshold. More simply, this is
the number of exceedences in thepdation divided by the totapopuation.

Since the pogation is infinite in number, both dNand N are infinite, but their

ratio is finite. Rewriting equation 4-4 as
Ne/N|
P& =1+ Ne/N|

(4-5)
avoids the difficulty of expressions involving infi@ numbers. For any water-
bearing volume of the subsurface, Equatdbh maps any conceation value
(any number greater than or equal tooze¢o a monotoically increasing number
between zero and one, defining a cumulatprebablity function. If the
function is differentiable, its derivative is tipgoballity density function (pdf)

for the concentration values in the population.
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Although the discussion above describes a [admn as abody of
concentration values determined over a finite region of space at an instant, the
same ggument would apply as well to a finite region of space over a finite
period of time. As time passes, water moves in and out of the regigfinga
different levels of the constituent with it and changing the concentrations inside
the region. From amathematical stadpoint, this is no different from the
variationfrom point to point over the region at a fixéiche, the concentration
simply varies in four mnensions instead of three. Tpepuation is enlarged by
the addition of a dimensn, but the defition of the probaliity functions is
unchanged.

Parameters and Statistics. Propeties of the cumulativgrobalility function

and the pdf argparameters of the poplation. For the purposes of this study,
parameters include not only the usual measures of central tendency (mean,
median, etc.), spread (standardidé&wn, interquatile range, etg, and so on, but

also the probdbhties associated with concentrations values that are of particular
interest (detection limit, maximum contaminant level, etc.).

In ideal version of this atly, Texas would be divided into analysis
regions at an instant, and the parameters optipelations associated with those
regions would be mapped and analyzed. This idealysthowever, requires
completeknowledge of the popations in the analysis regiongjowledge that is

plainly unavailable.
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Instead, the studyedls with statistics or estimates of the parameters
calculatedfrom a finte (and small) number of actual measurements in the
sectors. The actual measurements fosarapleof the population.

Two Probability Estimation Methods. Two sets of statistics, representing two
models of exceedengmobalbilities, are calculatefor the 7.5' quadrangles. The
first set are non-pametric estimates of thprobalilities that a the nitrate
concentration at a point selected atdem beeath the quadrangle will exceed a
selected threshold value. The ced set are the two paneters (mean and
standard deviabn) of the lognamal distribution that best fits the distribution of

nitrate concentrations measured in wells in the quadrangle.
4.4.1 Discrete Probability Estimates

To calculate a discretprobabhlity, the quadrangle is imagined to be an urn
containing a very large number of red and green balls. For example, if 5 mg/I
nitrate-N is selected as the threshold, any potential water sample in the
popdation beneath the quad with a nitrate concentration greater than 5 mg/I
would be represented as a red ball, and any potential water sample with a nitrate
concentration less than or equal to 5 mg/l would be represented as a green ball.

A red ball might represent a concentratiorb& mg/l or 300 mfl; no distinction

would be made between these two values. If the number of red baln@Nthe
number of green balls @) in the urn are known, the probaty of drawing a red

(Pr) ball is given by

~ Nr/Ng
=1+ N INg’ (4-6)
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which is the same as Equatidfb. If balls are drawrirom an urn cotaining an
infinite number of balls, or drawinom a finte upply and refaced, the ratio of

red balls drawn to total balls drawn will be described by the binomial

distribution. If n lalls are drawrfrom the urn, the most likely value fog,rthe

number of red balls drawn is the integer nearegt nP

The probability of drawing s red balls in n trials is equal to
e(n, s, P) = [{Py) 1 - RS (4-7)
nQd

where &0 is the number of combinations of n trials that contain s successes

(Snedecor and Cochran, 1980). The clative probablity of s or more

successes in n trials is given by the sum of @] s, i) with m greater than or

equal to s.
n

E(n,s, P) = Z e(n, m, P (4-8)

m=s
Water Sampling as a Bernoulli Process. If it were possible to test all the
analyzable volumes of water in a sample pantitithe atio of measurements
exceeding to measurements not exceeding the threshold could be determined in
the same way as the ratio of red to green balls iaran The probabty that a
single sampling event would exceed the threshold could be calcutarad
Equation 4-6 and the bingal distribution would describe the outcomes of a
series of measurement events in the same way that it describes ballg§rdrawn
an urn.

If we know that an urn caains a mixture of red and green balls but we

do not know the atio of red to green, we can estimate the ratio by repeatedly
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drawing a ballfrom the urn and keeping track of the numbers of red and green
balls drawn. Again, if the drawn ball is replaced after each trial or if the urn
contains an infinite number of balls, the ratio of red to green is unchanged, and
the outcome of the trials will take tfierm of a binaenial distributon. The best
estimate of the ratio of red to green balls indheis simply theatio of red balls
drawn to green balls drawn. The expected accuracy of this estimate increases as
more balls are drawn. Similarly, when water is drdvam a region, the best
estimate of thainderlying probaitity that a constituent's concentration exceeds

a threshold is the number of exceedences divided by the number of
measurements.

Estimating Probability from Trials. In general, if a series of n trials results in s
successes—drawing a redllp detecting a constituent in a concentration that
exceeds a threshold, etc.—the best estimate ofutiterlying probaitity of
success, P, for a single trial is

P = (4-9)

Sl

Although this is the best ®#wate, it is more ppropiate to epress the
probalility estimate as a range of possible values and a degremfiflence that
the true probabty falls in that range. This takes therm of a satement like
"The proballity of success in a single trial lies betwe4d% and 60% with a
confidence level of 95%," or "There is a 5% chance that the pipabf

success in a single trial lies outside of the range between 40% and 60%."
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To estimate thepper and lower bounds on anieste of theprobalility
of success in a tridrom the results of severalidfs, the following steps are

followed.

1. Select a two-sidedaofidence level, Ir, for the range. This is the &khood
the true probabty will lie between the upper and lower bounds
calculated. Theorobalility that the true value lies outside the range is

equal toa.

2. Calculate the lower bound}, Fon the estimate by the following method.

For s =0, i.e. no successes,

P(0)=0 (4-10)
For s = n, i.e. all successes,
AM ="a (4-11)
Fors=1, 2, ..., n-1, find the value gf$) such that
1-E(n,s, Rs) =1 (4-12)

where E(n, s, P) is the cumulative binomial probability function, eq. 4-8.
3. Calculate the upper boundy, Bhrough symmetry, using the relation
Pu(s)=1-Rn-s). (4-13)
Steps 2 and 3 require inversion of the binomial distrdwuti Thismethod
of finding confidence intervals on bimoal probalility estimates is described by
the Harvard University Computation Laboratory (1955).
If, for example, 2 out of 1éheasurements exceed a 5 mg/l threshold, the

best estimate of the exceedepcebahlity p e(5 mg/l) is 0.2, and the 90% (two-

sided) confidencdimits on the exceedengaobalility are goproxmately 0.037
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and 0.507. If twenty out of 10measurements exceed the same threshold, the
best estimate of dremains unchanged, but t®€% confidence interval now
falls between 0.137 and 0.277.

Binomial Estimates of Exeedence Probabilities. Using Equations 4-10
through 4-13, it is possible toalculate the best estimate of the exceedence
proballity for any threshold, and upper and lower confidehogts on that
estimate from a sample composed of any numbemnufasured concentrations.
For exampleTable 4.3ists the 51 nitrate concentration values listed in the study
databasefor measurements taken in wells located in quadrabgi0. 35
measurements exceed concentration®.tf mg/l. 20measurements exceed 1
mg/l. 2 measurements exceed 5 mg/l and 10 nmigible 4.4shows the results of
estimating exceedenpeobalilities from thesemeasurements using the binomial

distribution as a basis for calculation.

Table 4.3 Nitrate Concentrations in Quadrangle 5740

Nitrate Concentration (mg/l as Nitrogen)

20.10 20.10 0.34 0.79 1.33 3.17
20.10 20.10 0.34 0.81 1.58 3.17
20.10 20.10 0.41 0.88 1.70 4.52
20.10 20.10 0.45 0.90 1.81 4.75
20.10 20.10 0.48 1.06 1.81 12.67
20.10 20.10 0.68 1.13 2.15 15.61
20.10 20.10 0.79 1.24 2.26

20.10 0.20 0.79 1.24 2.71

20.10 0.34 0.79 1.24 3.05
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Table 4.4 Estimated Exceedence Probabilities for Quadrangle 5740

Threshold =) e P| Ph

(mg/I nit.-N) 90% two-sided 90% two-sided
0.1 69% 56% 79%

1 39% 28% 52%

5 4% 0.7% 12%

10 4% 0.7% 12%

Minimum Levels of Confidence. As more measurements are takieom a
popuation, the degree of confidence in théireate of an exceedenpeobalility
increases—that is, the gap between the upper and lower bounds otintfatees
decreases. If the sample of the gagpion consists of a single measurement, and
that measurement falls below the threshold, then the estimated exceedence
probablity is zero (also the lowebound for any confidence interval), but the
upper bound of the 90% confidence interval is 0.9. In other words, for nine cases
out of ten a single measurement below the threshold cnomsa poplation

with an exceedenceproballity less than 0.9. This is a very weak
characterization of thpopuation. If an exeedencerobalility estimate is to be
included in a map or a regression analysis we would like it to make a more
definitive statement.

Two possible criteriafor including a measurement in the maps and
regressions were considered. The first was that an exceegeoicablity
estimate would be included only if it was based on at least a minimum number of
measurements. The sad was that an eeedencerobablity estimate would
be included if the difference between the upper and lower bounds of the 90%

confidence interval was less thanedested valug¢33%, for example). The two
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criteria produce different sets of includedtiesates because the difference
between the upper and lower bounds Bsager when th@robalility estimate is
close to 0.5 than when it is close to one or zero.

Figure 4.4shows the 90% confidence intervals on pralitgbestimates
calculatedrom a sample of twelveitls. If six trials are successful, then we can
say with 90% confidence that the probidyp of success in a single trial lies
somewhere between 25% and 75%. If naldrare successful, we can say with
the same anfidence that the probdity of success in a single trial is less than
17.5%.

This figure reeals a dilemma in the choice of a m&d for ®lecting
exceedenceroballity estimatesfor inclusion in the maps and regressions. |If
the selection criterion is a maximurardidence interval, then very fewtasates
close to 0.5 vl pass the test and the maps and regressions will be biased toward
the extreme values of exceedenmeballities. If a minimum number of
measurements is required, then many estimates with soraidence intervals
will be excludedfrom the maps and regressionkigure 4.4illustrates this

problem
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Figure 4.4 Estimating Probability of Success from a Sample of Twelve Trials
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b) Confidence interval restriction

a) All Quads with Measurements
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Figure 4.5 Effects of Different Inclusion Criteria

with a series of histograms showing the number of quads falling into bins based

on the estimated 1 mg/l exceedence probability for the quads.

In Figure 4.5aall quadrangles with any measurements at all are included,

even those with only one measurement. The inclusion of single-measurement

quads leads to highoants at the high and low ends of the proligbscale.
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Figure 4.5bshows the results of restricting theuats tocells with a 90%
confidence interval width of 0.33 or less. Again, the counts at themegtvalues

are high, and most of the quads in the middle range have dropped out.
Figure 4.5cshows the results of restricting theunts tocells with 12 or more
measurements. This decreases the number of included quads at the extreme
values and increases the number in the middle range, producing aewti@s-s

of probalility estimates that more closely follows tharesticted set, but allows
middle-value quads to be included when their confidence intervals eategr

than those of extreme-value quads that were excluded.

The minimum-number-ofreasurements criterion was chosen because it
better reflects thenresticted data set. The minimum number of measurements
for a quad to be included in the maps and regression was set at tvezlaasd
the worst case uncertainty (widesbnfidence interval) was + 0.25 for an
exceedenceprobalility estimate of 0.5. This was judged to be the widest
tolerable confidence interval for inclusion.

In summary, the disete exceedengerobalility estimates are calculated

by the following method.

1. The total number of nitrate measurements are counted.

2. The number of measurements exceeding the selected threshold are
counted.

3. An exceedenceprobabhlity is estimated by dividing the number of

exceedences by the number of measurements.
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4. If the number of measurements in the quadrangle is greater than twelve,

the exceedence probability is included in maps and regression analysis.
4.4.2 Lognormal Probability Estimates

If the probaldity distribution of a popdation follows a particular
function, such as the lognmoal distributon, the probaillity that a measurement
will exceed a threshold can be calculatesin that furction's definition and a
small number of parameters. Estimates of the distribution parameters are, like
the discreteprobalilities in the preceding secotn, gatistics calculatedrom
sample data.

In the case of exceedenpeobabllities for chemicals ingroundvater,
there is no reason to believa priori that the true probaliy density of the
popuation in a sample partition will match therm of an analtical function
exactly, so any assumednction is an appramation. The chixe of an
analyticalfunction is based on three factors: the suitability offtren of the
function to the sample data, the number of parameters, and the calculability of
the parameters. The iddainction would fit the sample data and have a small
number of easily calculated parameters.

In this study, the lognamal distribution is used as apm@oxmate form
for the continuous probdlty distribution of constituent concentrations. This
choice is based on botlparoprateness tgroundvaterprocesses, and pragmatic
concerns. In general, processes such as infiltration and pesoohahich follow
multiplicative rules, tend toproduce lognanally distributed results, so

lognomal distributions are fairly common igroundvater systems. As a
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practical matter, fitting more than two parameters is often difficult and tends to
produce inconsistent results. Of the commonly used one- and taowpiar
distribution forms (exponeial, normal, bgnomal) the bgnomal distribution
appears to fit the data in thisudy the best. The exporteal probablity density
function is monotoitally decreasig, and the naonal proballity density
function is symmetricaltzout themean; neither of thes@wditions is true for the
distribution of nitrate concentrations.

Estimates of parametefsr some distributions, including the lognormal
distribution, can becalculatedfrom the moments of theata. However, this
method of esmation caanot be apled when the data areensored as are the
water quality data used in this study.

Censoring occurs when some of the data are identified as "less than" or
"greater than" some limiting value, rather than as exact valuesbalitity
distribution parameters can only be calculatexin the moments of censored
data if specific values are assumfed data falling in the censored range (i.e.
below the detection limit).

Instead of calculating parametémsm moments, it is possible to evaluate
the parameters by calculating a "best fit" to the data over the uncensored range.
For any value of constituent concentration actuallpmed formeasurements in
a sampling region, the number ofceedences can beounted, yielding an
estimate of the value of the cumulatipeobalility function at each rexded
value. Values of the parameters of the selected distribtdrom are chosen to

minimize or maximize a fitting score, such as the sum of squares of deviations or
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the likelihood fumrtion. This paamete-fitting method is a numeécal analog to

graphical fitting by plotting the values on probability paper.

The following method was used totiesate the parameters of the

lognomal distribution of agroup ofmeasurements. The rhed isillustrated

with data from Quadrangle 5740, which is mmarized inTable 4.5 and

Figures 4.6.

1.

The measurements were ranked by concentr&tiom high to low (as in
Table 4.4)

The common (base 10) logarithmezfch unique concentration value was
calculated.

An estimated cumulativerobalility for each unique concentration value
Blom's formula,

m - 3/8
P(X 2 Xm) = n+ 1/4 (4-14)

was used to estimate thmobablity, with X = log10(C), the log of a
concentration value, n is the total number of measurements@nd ke
mth-ranked concerdtion value. Blom's formula produces nearly
unbiased estimates pfobalility for nomally distributed dat§Chow, et
al., 1988).

The normal variate zocresponding t@ach cumulativerobalility value
was calculated by inversion of the gaussmnmal probalility function
(z(0.16) = -1, z(0.5) = 0, z(0.84) = atc.). This wasalculatedfrom the

Blom's formula p using (for 0 < p < 0.5)
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W= @nﬁ%@l 2 (4-15)

. 2.515517 + 0.802853w + 0.010323w
1+ 1.432788w + 0.18926%w 0.001308W

(4-16)

When p = 0.5, z=0. When p > 0.5, 1-p is sib=d for p in eq. 4-15,
and the z value calculateilom eq. 4-16 is given a native sign

(Abramowitz and Stegun, 1965).
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Table 4.5 Data for Lognormal Fit to Quadrangle 5740

Rank C (mg/l-N) log (C) Blom's P z(P)
16 0.10 -1.00 0.30 -0.51
17 0.20 -0.70 0.32 -0.46
20 0.34 -0.47 0.38 -0.30
21 0.41 -0.39 0.40 -0.25
22 0.45 -0.34 0.42 -0.20
23 0.48 -0.32 0.44 -0.15
24 0.68 -0.17 0.46 -0.10
28 0.79 -0.10 0.54 0.10
29 0.81 -0.09 0.56 0.15
30 0.88 -0.05 0.58 0.20
31 0.90 -0.04 0.60 0.25
32 1.06 0.03 0.62 0.30
33 1.13 0.05 0.64 0.35
36 1.24 0.09 0.70 0.51
37 1.33 0.13 0.71 0.57
38 1.58 0.20 0.73 0.63
39 1.70 0.23 0.75 0.69
41 1.81 0.26 0.79 0.82
42 2.15 0.33 0.81 0.89
43 2.26 0.35 0.83 0.96
44 2.71 0.43 0.85 1.04
45 3.05 0.48 0.87 1.13
47 3.17 0.50 0.91 1.34
48 4.52 0.66 0.93 1.47
49 4.75 0.68 0.95 1.63
50 12.67 1.10 0.97 1.86
51 15.61 1.19 0.99 2.25
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5. The best fit for the function
z[P(X 2 Xm)] =a+ bxXm (4-17)

was calculated by least squares regression. (See Figure 4.6)

Nitrate Concentration (mg/l)

0.1 1.0 10.0
25 I 1 I 1 I

Z (normal variate)

-1.5 -1 -0.5 0 0.5 1 1.5
log(C)

Figure 4.6 Fitting a Probability Distribution by Regression for Quadrangle 5740

6. The lognormal parameters were calculated from aand b as
nx = -alb (4-18)
sx =1/b. (4-19)

Where nx is the mean and sx is the standard deviation of the log-transformed

concentrations.
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7. An exceedencprobalility of a threshold concentration C is calculated by

finding the corresponding normal variate
lo C) -
. 910(C) - Bx | (4-20)
Ox
The exceedencgrobalility is equal to one minus the cumulatinermal

probability of the variate Z.
4.4.3 Discussion

The two probatlity models represent two differentpproaches to
statistical estimatin. The disate or binomial estimation nfeid is a non-
parametric pproach, in that it does not rely on an assumed pilityab
distribution function. The lognaoral estimation méiod, kecause it depends on a
particular analyticafunction to form its predtions, is a parametricpgroach.
Each approach has advantages and disadvantages.

Binomial Model. The chief advantage of the binomialproach is that itatains
the same validity no matter whahderlying probaitity distribution describes
the data. In both distributions shownfiure 4.7 the totalprobalility mass to
the right of the vertical line—the exceedengmbalility for the threshold
represented by the line—is equal to 0.25. Since thenbalamehod is based
only on the totalproballity of exceeding the threshold, the difference in the
shape of the two distributions makes no difference in the estimatougdure.
The lognomal model would fit the left distribudn, which is lognanal, well ,
but not the one on the right, which is the sum of a normal agdoimal

distribution.
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Figure 4.7 Discrete Probabilities from Continuous Distributions

The fit of the datdrom quadrangle 5740, shown figure 4.6is typical
of those examined individually in thisusly; the lognamal model fits well
through the middle of the range of concatitins, but deviatekom the dta at
the ends of the data. In the case of q6&d0, the model underpriets the
number of measurements with low nitrate concentrations.

The discrete model also gives meaagful confidence intervals on its
estimates. More measuremept®duce less uncerinty in a predictable and
understandable way. Although it is possible tdineste erors from the
regression fitting theognomal distributon, these describe the goodness-of-fit of
the regression, and not unta@nties in the estimatgarobalilities. A lognormal
model based on two data points will show a perfect fit, and no standargtbis

has no meaning for predicting the accuracy of the model's predictions.
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Lognormal Model. The lognomal model doesffer some advantages, however.
Once the parameters have been fit, it is not necessary to revisit the original data
to estimate therobalility of exceeding a new threshold value, as ifds the
discrete model. Theognomal parameters, indicating the central tendency and
spread of the data, are mordarmative dout the range of conceations seen
in the region than the single probabilities produced by the discrete model.

The datdrom quad 5740 also point to a d@éncy in the discrete model.
The estimated exceedenmmbalilities for the 5 mg/l and 10 mg/l thresholds are
identical, because the two measurements greater than 5 mg/l were also greater
than 10 mg/l. Intuitively, we would expect a higher exceed@nakallity for
the lower threshold. The logmoal model would fit this expectation better than
the discrete model.
Caveats. Some limitations and warnings apply to both models. Defining
exceedencerobalilities on regions implies that the behavior of the whole region
can be adequately characterized by that number. This would be true only if the
probalility of detecting an excess of the constituent were the same at every point
in the region. Bcause the regions amhbmogeneous, this is not true. The 37
wells located in qua&740 and included in the study dravaterfrom the Glen
Rose Limestondrom the Hosston Famation, and from the Trinity Group. The
wells have depths rangirfpom 80 to 500 éet. Over this range obnditions,
there must be significant variation in exceedence probabilities.

The exceedenc@robabhlity would still characterize the region as a

whole, if not every point in it, if the samples were truly randomly selected, or
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chosen as representative of the oegi Since themeasurements are collected
from existing vells, and some wells are more frequently sampled than others,
even this claim is weakened. Most of the wells in ¢bizdD were sampled only
once. One was sampled twelve times. All of the measurenfromisthese
samples were treated as equally representative of the quad.

This can be justified in part by the fact that water moveeugh the
region, and that severaieasurementom a well taken at different times can
represent a region around thellv However, twelve measurements at a single
location are not the same as twelve measurements at twelve locations. No
attempt was made toorect for biases introduced by the TWDB sampling
schedule.

The exceedencerobalility estimates Bould not be taken as absolute
predictions of exceedence rates, bubidd ingead be viewed relative to each
other. A region with a high estimated exceedegmudalility is different from
one with a low estimated exceedenqueballity, and more measurements lead
to greater onfidence that the difference isal. The onfidence intervals on the
exceedenceprobalility estimates canot account for bias in the sampling
scheme, bubffer a set of "best case" bounds. The trueeexencerobalility
for the regionlies between thosboundsif the sample is representative of the
region. The dta used in the wtly provide no basis for judging howeil the
regions are represented by the samples. It is assumed that the samples are

sufficiently representative that the differendemm one quadrangle to another
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(particularly when the quads are widely separated) are more significant than the
inhomogeneities within the quadrangles.

Preferred Method. On balance, the binomial pproach to dsmating
exceedenceprobalilities seems more suited to thodem of characterizing
groundvater vulnerability. Therobalility distribution of nitrate concentrations
cannot reasonably be eeqied to follow the samfinctional form everywhere.
In some cases, the logmaal distribution will fit well, in others it will fit over a
limited range of concentrations. Since water quality regulationsrpocate
threshold concentrations in the form of maximum taamnant levels and
monitoring trigger levels, it makes sense to use a method thiataéss the
probalility of exceeding those thresholds regardless ofah@ of the underlying
proballity distribution. In the preseation of results inChapter ¢ the

lognormal model is used in only one map.
4.5 MAPPING OF INDICATOR PARAMETERS

The soil property, @cipitaton, and fetilizer sales data, which are tested
as indicators of vulnerability to nitrate contamioati are cotained in poygon
coverages in the vector GIS system of Arfd. The polygons—STAIGO map
units, counties, and Thiessen ygdns—are irregularly shaped and, with the
exception of the two soil parameters deriVeain the STATSGO soil @ta set,
the extents of polygons assated with one parameter do not coincide with the
extents of polygons assated with any other parameter, or with the quadrangles
for which exceedencerobablities have been calculated. The map£imapter 3

clearly illustrate this.
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In order to compare the vation of the indicator parameters with the
variation of the exceedenpeobalilities, all the indicator parameter values were
re-mapped onto the quadrangles. The discussion that follows examines the

meaning of this re-mapping.
4.5.1 Polygons and Their Attributes

In a vector GIS, a polygon is a contiguous, bounded area on theewff
the earth. Within a coverage or thematic layer,ldbendaries of a polygon are
determined by differences in the values of the attributes #paess the thme.
Examples of attributes that define pgbns are: pdical affiliations, like
counties; geological or oth@hyscal characteristics, like the soil associations in
the STATSGO soil dta; or arbitrary divisions ahg made-up boundaries, like
7.5' quadrangles.

Locating a point inside a pgjon can be compared to identifying a
member of a set. If a location lies inside a giverygaoh, it meets the criteria
that define the polygon. Consider a Theissen network catstiwaound rain
gauges. For gauge number 123 there is a polygon defined as "thelbgtonfits
that are closer to gauge 123 than to any other gauge." Attribute values may be
assigned to a point (such as the location of a well) based on the attributes of the
polygon in which it is leated, and all points lying within theoundaries of a
polygon would ecessarily have the same valdes the attributes assigned to
them from the polygon. If the average annual &dirdt gaugel23 is 28 inches,
then the statement "The averagm@al rainfall at the nearest gauge is 28 inches"

is true for all points in the Theissen polygon surrounding gauge 123.
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A GIS polygon with arattribute value is something like a bin or a bucket
with a label on it. The label applies to all the contents of the bucket, and no
distinction can be made between one part of the contents and another, or one part
of a polygon and another. This does not imply that such diiiims do not exist,
only that they cannot be represented by the GIS without sub-dividing the
polygon.

Although sometatements, like the descriptions of the Theisseggmuis
above, are true for every point within a polygon, others apply only to the polygon
as a whole. For example, polygon 123 might have an area of 25 sgilese
but the statement "the area of every point irygoh 123 is 25 squamiles” is
meaningless.

Still other statements, while applying in agorous sense only to the
polygon as a wholetil have some meaninfpr points within the polygon. This
is true for average or tal values calculated over a gpgbn. The wtements
"this point lies in a pglgon where atzine is applied at an average rate of 0.5
kg per square kilometer" and "atrazine is applied at an average fatelaf per
square kilometer at this point" are not equivalent. A great deal of GIS-based data
is collected and ported as averages or totals overygohs. In such cases, it is
necessary to approrate values at poinfsom averages or tals over pofgons,
because no other data is available. This is true of most of thgopebased data
used in this study, including the a@edenceprobalilities calculatedfrom the

TWDB data.
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4.5.2 Overlaying Polygons

In order to study the préedive power of more than one parameter on the
behavior of groundater quality, it is necessary to combine dixtan several
thematic layers. Thiprocess, called overlayy, is smilar to constructing the
intersection of sets. Overlaying two pgbn coverages—for example soil
polygons and Theissen polygons, as shownFigure 4.8—preserves the
boundaries of both sets of original polygons arehtgs a more complex set of
polygons.

Combining thematic layersitough polygon overlay preservaB of the
information present in the original coverages, but frequently results in small,
oddly shaped polygons. It would be possible to oved#lythe polgons
associated with the indicator parametgreup vells and nitrate measurements
according to loation in the resulting ppjons, anctalculate statistics on those
groups, as was done in the 7.5' quadrangles. The irregularity and highly variable
size of the resulting pgyons, however, makes comparisons between them
difficult. An alternative mdtod patitions the location space into doim peces

and interpolates attribute data onto the resulting partitions.
4.5.3 Raster Cells and Attributes

Like a polygon, a raster or grickll is a conyuous bounded area with
associated data. Unlike a pgbn, its boundaries areetérmined by a regular
patten, like a checkerboard, not by changes in thi&a dalues associated with it.
Rasters are frequently used to express continuously varyindittggen Rasters

approximate continuous variation as a series of discrete steps.
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The single value associated with a raster cell can be an average value or a
dominant (maximum, maximum area, maximum weight) value over the cell's
area For continuously varyingata this is plainly an gproxmation, but a
tolerable one if the area of an individual cell is smabggh that the véaations
within an individual cell are small compared to the range of variation over the
area mapped by the whole grid.

The great advantage of rasters ovelgohs is that when &matic layers
are combined, the spatial structure remains unchanged, because the grid of cell
boundaries is theasne in each layer. No irregular fragments farened when
raster layers are combined.

If the surface data and the exceedepecebalility estimates are all
represented on a common grid, then linking prdbigtyvalues to indicator values
becomes a matter of extracting several attribute vdirea single gridcell,
which is a trivial GIS operatn. Thelimitations of raster GIS, however, make
resolving the probabilities and the surface data to a common grid difficult.

The most serious limitation of the raster system is its limited
representation obpology. All cata in a raster GIS consists of cells. A point can
be represented appliaxately by a single cell, a line by a series of adjacent cells,
and a polygon by a cluster o€lls, but spatial concepts like the location of a
point in a polygon cannot be represented in a raster GIS. Selteand nitrate
measurements weigrouped by loation within7.5" quadrangles for this study,
this limitation needs to be overcomefdre all the data can be represented in a

common grid.
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4.5.4 Rasterized Polygons: A Compromise

In order to preserve the point-and-polygon topologgassary to group
the nitrate datafor datistical analysis, and to allonurdace data (rainfall
amounts, soil pameters, and fertilizer applicati) to be compared consistently
with the variation of the exceedenpeobalility estimates, a copromise was
developed.

The polygon coverage used to group thalsvand nitrate readings was
overlaid on each of the indicator parameter coverages, resulting in a highly
fragmented polygon coverageézach fragment, however, was associated with the
original polygons that formed the overlay through the coverageibute table.

It was possible to calculate an area-weighted avei@gthe paameter values

for each quadrangle byrouping the fragmentaccording to the quadrangle IDs

in their attribute tables. The averages could then be linked to the quadrangle
coverage, along with the egedencerobabllity estimates. The steps required to
carry out this averaging and linking are describedséantion5.7. Figure 4.9
illustrates theprocess of resolving the exceedepeebalilities and the indicator
parameters to a common grid. By using the quadrangle numbers as a key to link
the tables containing the parameter averages and the excepddaradities, it

is possible to form a single table ¢aming exceedencerobabhlities and
indicator parameter values for each quadrangle.

The contents of this table can then be linked to the quadrangle coverage
and used to map the variation of the exceedenalealilities or the values of the

indicator parameters over the quadrangles. The values of the exceedence
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probalilities and the indicator parameters can also be written to an external file,

and used as input to a regression analysis.

4.6 REGRESSION ONINDICATORS

Once the indicators and the exceedemwdablities have been linked to
a common grid, values faill these data can be tabulated and used independently
of their spatial relationships. The values of exceedegmobalility, average
precipitaton, soil thickness,etc. can be treated as a dependent variable
(exceedenceprobalility) and a series of independent variablgsecipitation,
etc.) in a multiple linear regression to produce a model of the form

P=[p+ X1+ X2+ BX3+ ...

where each is a found by fitting the values of P and the variogs.X

The regression method used in this study to quantify éhetionship
between the indicators and the exceedepabhlities is stepwise multiple
regression. In this procedure, variables are added teletedfrom the model
one at a time aoerding to the signi€ance of their coefficients, as measured by
the partial and sequential F statistics (Draper and Sa8@1). In this work, an
F statistic of 4, indicating 85% probabity that the coefficient differsdrom

zero, was used as the inclusion criterion.
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4.7 Confirming Assumptions

To generalize the presentudy, two assumptions must be confirmed.
The first is that the historic database usedoron the exeedenceprobabllity
estimates isudficiently typical ofgroundvater in Texas that those estimates can
predict where nitrate contamination is likely to occ The second is that
vulnerability to nitrate contamination is related to contamination by other
constituents, specifically agricultural chemicals.

To test these assumptions, two additional data sets were included in the
study.

Nitrate measurements collected by the Water Utilities Division of the
Texas Natural Resource Consatien Commission from puie water sipplies
over a period of just under two years (in 1993 and 1994) are compared to results
of the analysis of the TWDB databdese the years 1962—-1993. This comparison
tests whether water ipublic supplies differs significantlyfrom the general
sampling condcted by TWDB, and whether changes in theunnce of nitrate
in groundvater over time make the more recent WUD data diffefeamh the
thirty years of TWDB data.

A completely independent data set, collected by the U.S. Geological
Survey in the midwestern U.S. (samples from North Dakota, South Dakota,
Nebraska, Kansas, Minnesota, lowa, Missouri, Michigan, Wisconkinpis,
Indiana, and Ohio), is used to test the assumption thatatime sonditions

leading to high vulnerability to nitrate also lead to vulnerability to other
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contaminants. The metds used to analyze thesedadsets are described in the

discussion of procedures and result€rapters and6.

157



Chapter 5: Procedures

This chapter describes design and implementation of the computer
programs used to orgae and intepret the data. Definitions of the INFO
database tables used in thigdst are listed im\ppendix A. The source code for
programs is presented #ppendix B. In several cases, an involved series of
Arc/Info conmands was entered from the keyboard to carry out a procedure.
Some of the Arc Macro Languagen(l) programs included iAppendix Bare, in
effect, transcripts of kdoard procedures with ooments insertetbr clarity. A
reader reasonably familiar with Afnfo should be able to reconstruct the
computer analyses carried out in this study detety from thematerial in this
chapter and the appendices. All operations were carried out on a Sun Sparc 2

workstation using Arc/Info version 6.1.1, except as noted.
5.1 IMPORTANT FEATURES OF INFO AND TABLES

The Arc/Info GIS incorpates the NFO database management system
for manag@ment of its tabular data. Since trganzation and manipulation of
tabular data, both related anoirelated to spatial objects, is crucial to the
methods used in this study, a brief discussion of some imposgatirés and
programming tricks is required b@re moving on the gxific procedures used.
A limited set of NFO canmands is included in the TABLES subsystem of
Arc/Iinfo. The ditabasgrocedures in this study were carried out using TABLES

commands.
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In concept, an INFO table is a setretords each with the same set of
items A record represents some j@tt—a well, a nitrate measurement, a
STATSGO map unit—and theems define a set qiropeties of the object. This
structure is identical to the set of tuples that make up a relation in the database
model discussed iBection4.3.1. For example, a record in the table of nitrate
measurements, called "meas" contains the items WELL-ID, YBMMABNTH,
DAY, and NITRATE, anong others. A record in the table oéNvdata, called
"wells.dat,” contains the items WELL-ID, DEPTH, LATITUDE, and
LONGITUDE, anong others. (This example is simplified folarity. The
definitions of the tables actually used in thadst are listed inPAppendix A.)
Each reord (or tuple) in fheas" orresponds to a ndate measurement collected
from one of those wlls on a particular day, and each aet in "well"
corresponds to a well somewhere in Texas.

The database query expressed in relational calculus in eq. 4-1,

{r |r O meaddr[well-ID] = 5740304}

would be carried out in INFO with the commands

select meas

reselect well-id = 5740304

The first command makes "meas" the active, or queriable, table, and the
second resicts the selected set of mds to thosemeeting the stated criteria.
By doing so, these commands implement the two parts of the predicate of the

relational calculus query.
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Because the tables "meas" and "well" contain a common item, WELL-ID,
there is a logical annection between them. Thisrmection was exploited in
query 4-2, which alected tuples on thfieom the elation "meas" on the basis of
values in the relation "well". Ordinarily, howeveNRO canaccess the contents
of only a single table (the "selected" table). To circumvent this limaitatihe
user must use a special mechanism called "relate," which allows a table to be
expanded temporarily withemsfrom a second tableFigure 5.1shows a relate
in concept. The tables shownkigure 5.1are made-up examples, natafrom

the study.

meas (" )
rec# |well-id | nitrate
1 1 05 N well
g ; ;-8 ‘\ well-id | depth
0 N 1 156
s T2 To1 H—1 281
5 3 0.2 ] 3 17
6 3 |05 [T—
7 4 10.0 1
\\§ 4
Relate "rel1"

Figure 5.1 Example of a RELATE

In the figure, theelate "rell" has been defined on well. The relate grants
access to the contents of wells.dat to any other table that contains an item
identical to the item "wellno". In thedure, the elate has been attached to
nit.dat. This means that the contents of wells.dat can be read while meas is

selected. In TABLES, the items accesdaough a elate are referred to by the
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relate name and the item namenocected by two slash (/) characters.
"rell//depth" refers to item "depth" in wells.dat, accesdedugh the elate
“rell". The equivaent of the relational caluculus expression

{r |r OmeaddOsOwell (rfwell-ID] = gwell-ID] O gdepth] < 100)}
would be the INFO commands

select meas

reselect rell//depth < 100
which would select records 5 and 6 from the tables showigirme 5.1.

The relate mechanism gives rise to a usefwgramming device used
several times in thiswtly. Relates can grant accdss both reading and wing
to the related table, andNFO pemits simple mathematical operations to be
performed on the contents of tables. These atjmers can be combined to
calculate ounts, sums, averages and weighted averages. A series of examples
will illustrate this device.

The TABLES commandaalculate calculates new value®r items.
To create an itenfor nitrate-NQ3 equivalents of the nitrate-N concentrations
shown inFigure 5.1 a new item called conc-NO3 is added to the table "meas"
and the commands

select meas

calculate conc-NO3 = conc * 4.429

produce the values shown in the table "mea$igure 5.2.
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To count the number aheasurements in each well, a new item called
m_cnt is added to the table "well" and given an initial value of ferall
records. The commands

select meas

calculate rell//m_cnt=rell//m_cnt+ 1

produce the values shownhigure 5.2in the table "well."

meas 4 A
rec# |well-id |nitrate | conc-NO3

1 1 0.5 2.21 q well
g % %-8 g-gg \\Well-id depth |m_cnt

: : i 1 156 | 2
4T 2 Tol [0 Ht5—T501
6 3 |05 [221 T —
7 3 10.0 | 44.29 d

\\§ J

Relate "rel1"

Figure 5.2 Using a RELATE to Count Measurements in Wells

This device wrks by explding the fact that TABLES p#orms the
calculations sequentially, rexd by record. Theétem in the related rexd is
updated oncéor each orresponding record in thelected table. IfNFO and
TABLES performedcalculations in parallel, this device would nobrk. The
same operations could berfeemed in external programs, or through the use of
the full INFO databaseprogmmming laaguage, but this dese simplifies the

required programming considerably.
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If the "reselect” command is used to restrict the set of selectertiseto
those meeting a set obrditions, the relate/calculate device can be useduatc
recordsmeeting the ondition. For example if aitem called "gtl_cnt" is added
to the well.dat table (with initial values set tor@g the following TABLES
commands, executed while the nit.dat table is selected, will assign the number of
measurements in each well that exceed 1.0 to the new item.

reselect conc > 1.0

calculate well//gtl_cnt =well//gtl cnt + 1

More complex uses of the combination of relates with the calculate
command will appear in the sections that follow.

Another database operation that requires some explanationredifane
feature, which is best defined by example. Withinords of the tables
"twdb_wells.dat" and "twlb_wells.nit,” which contain the well descriptions and
nitrate measurements extractedm the TWDB Groundater Data System, the
well number occupies the first seven bytes. The first two digits of the number, as
explained inChapter 3 identify the one-degree quadrangle in which the well is
located. The first two bytes of each well oet areredefinedas "QUAD_1D",
allowing the user to refer to only the part of the well number that identifies the
one-degree quadrangle, without requiring parts of thk mumber to be entered
multiple times. Similarly, th@.5" and 2.5' quadrangles are identified from the
first four and five bytes of the el number, as shown iRigure 5.3. By using
these redefined items, and the relate/calculate trick describedeait is

possible to count theells in each quadrangle, the number of measurements in
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each quadrangle, and the number of measurements exceeding various thresholds

in each quadrangle.

37405802]  well number

one-degree quad number
7.5-minute quad number
2.5-minute quad number

Figure 5.3 One INFO Item Redefined into Four Items

The redefine operation can combine any set of adjacent sigitde
"columns"” in an INFO table, including those that sparitiple items, into a
psuedo-item. This is especially pkll when no singletem has a unique value
for each reord in the table. Records in the component table of the STATSGO
databasefor example, can only be identified by the catenation of the map
unit ID and the component number. This is discusseckfaildin Section5.3.
Redefined items appear at the end of lists of item&NKFOl tables. (See table

definitions inAppendix Afor examples.)
5.2 DATA ENTRY

This section describes the collection and mobilization of ttata its
original sources into Arc/Info GIS coverages anatadtables. The item

definitions for the resulting INFO tables are givem\jpendix A.
5.2.1 TWDB Well and Nitrate Data

The first step in this study was to convert thesllwand nitrate

measurement dateom the form in which it was provided by TWDB to Arc/Info
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databasdorm. This required defition of two INFO tables, onéor well data
and the second for néte measurement data. TWDOBovided the dta in
comma-delimited text files, with character data enclosed in siggtgation
marks. This format permitted the data to be entered directly into the tables using
the ADD command in Arc/Info TABLES.
Selecting the Base Bta. The well and nitrate measurement dixtan TWDB
were entered into two tables, called dtwwells.dat® and "twlb_wells.nit",
respectively. Items were added to these tables to indicate whetherdius riec
each well or nitrate measurememiosld be included in the study. After the
records were marked for inclusion or exclusi@gcording to the deria
described inChapter 3(seeTable 3.3and Section3.2.4), "twdb_wells.dat" and
"twdb_wells.nit" were copied to new tables, called "include.wells" and
“include.nit" and the excluded records were purged from these tkdaleing
only the wells and nitrate measurements to be used inutg st the "include”
tables.
A Programming Example. Because therocess of removing excluded data
from the tablesillustrates some of the basic techniques used in passing
informationfrom INFO tables to external (C or FORTRAN)ograms and from
one INFO table to another, it will be described here in detalil.

The program "testquaainl" in Appendix B identifies wells whose
latitude and dngitude are not consistent with their well numbers. It also
illustrates the movement of ddt@m an NFO table to an externgprogram and

back. The steps below outline tpeogram's procedure, and are itg of the
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approach taken to an analysis that is more complex than can be carried out easily

in Arc/Info.

1. From the "twdb wlls.dat" table, write the well number, latitude, and
longitude of each well to a comma-delimited text file called "qgtest.in".

2. To perform theactual testrun the test quad program (see test quad.c in
Appendix B)with input from "gtest.in" and output @icted to "qtesbut”.
The output file contains lines consisting of three comma-delimited fields:
the well ID number, a one-character code ('y' or 'n’) indicating that the
well is or is not orrectly located in its quadrangle, and a one-character
code indicating whether mis-located wells are in theng 1 _, 7.5', or
2.5' quads (values are 'd', '7', or '2").

3. Define a new INFO table ("gtest.tab™) to hold the test reseitgorarily.
The items in the table are WELLN@UAD_OK, and QUAD_ERR,
corresponding to the fields in the test program output file.

4. Select the new table, and add records to it from the text file "gtest.out".

5. Join the tables "twdb ells.dat" and "gtest.tab", adding the new items
QUAD_OK and QUAD_ERR (with valuesetermined by the external
program) to the original table.

6. Delete the input and output text files, and the temporary INFO table.

The result of this procedure is the extension of the tweliswlat table.
The two new items in the table show whether a welloisectly located in the

guadrangle indicated by its well numbemdaif it is incorectly located, whether
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its mis-location is due to placement in theomg quadrangle at the one-degree,
7.5-minute, or 2.5-minute level.

Although the comparison of theelW number with the latitude and
longitude is too complex to be carried out with the simple comparison operators
provided by Arc/Info, the ality to write selected contents oNFO tables to text
files, and to permanently add new items to existMgQ® tables using a kdatem
(one that has a unique value feach reord) makes it possible to carry out
analyses in external programs, using tRE® databasdunctions to assure that
the results are attached to the rightorés in the original atabase. The
calculation of bgnomal parametergor nitrate detections follows a similar,
although slightly more sophisticated, procedure.

The procedure used to test the consistency @f mumbers and well
locations required that datom an NFO table be transferred an external
program, and that the output from that program be added to the original INFO
table. Testing that records in the ater database havercesponding records in
the wells database requires reading and writing to two tables simultaneously, but
does not require the tables to be joined permanently. This is accomplished using
the "relate” mechanism described fRection 5.1 The aml programs
"testquad.aml" and "include.aml" (listed #ppendix B) contain a complete
procedure foralecting well and nitrate measurementarels for exclusion from
the study, based on theteria listed inChapter 3 Execution of these programs
produces the tables "includeells” and "include.nit”, containing the primary

data for the study.
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Converting Nitrate-NO 3 to Nitrate-N. The final step in preparing the nitrate

measurement dafar use in the study was thalculation of "adjusted” nitrate
concentrations. This process convertedasurementfom mg/l as nitate to
mg/l as nitrogen and set a uniform reportlimgit for all nitrate measurements.
A new item called "nit_adj" was added to the "include.nit" table. For abrdsc
included in the study reporting a @ite concentration d¥.45 mg/l as nitate, the
value of this item was set 1.1, to indcate a measurement at or below the
reporting limit of0.1 mg/l as nitrogen. Fall other included reards, the value
was set to the reported nitrate concentration divided by oneecsion &ctor
4.43.

Data Subsets for Aquifers. Two additional tables, one forelNs and one for
nitrate readings, were creatéol the five aquifers edectedfor closer study.
These were created bpmying "include.vells" and "include.nit" as 'gb.wells"
and "ag5.nit". A four-chacter text item called "agf* was added t@5anells"

to hold a code for theames of the sidy aquifers. Wells reords with TWDB
aquifer codes identified with the study aquifers weskected and @propiate
values for the "agfitem were written. The following TABLES commands

illustrate this process.

select ag5.wells
reselect agfcode = '124CRRZ' or agfcode = "124WLCX'
or agfcode = '124CZWX' or agfcode = '124CZWXA'
move 'CZWX' to aqf
aselect
reselect agfcode = '218EBFZA'
move 'EBFZ' to agf

(repeat for Hueco-Mesilla Bolson, Ogallala, and Seymour Aquifers)

168



aselect
reselect agf ="

purge
The resulting table contains only oeds for wells associated with the
study aquiferseach with a simple code identifying the aquifer. These are listed

in Table 5.1

Table 5.1 Codes for Study Aquifer Identification

Aquifer Name Code
Carrizo-Wilcox CZWX
Edwards (Balcones Fault Zone) EBFz
Hueco-Mesilla Bolson HMBL
Ogallala OGLL
Seymour SYMR

The "ag5.nit" table wasefated to the 'gb.wells" table by the shared
"wellno" item. Nitrate measurement oeds with no correspondingel record
in "ag5.wells" were identified angurged. tem definitionsfor "aqf.nit" are
identical to thosdor "include.nit". tem definitionsfor "aqf.wells" are given in

Appendix A.
5.2.2 Soil Data

The STATSGO dtabase was received as an Ao coverage with
related NFO tables. It was used Wwiutalteraton. Galculation of average soll
thicknesses and organmaterial contentdor STATSGO map units and.5'

guadrangles is described$®ction 5.3.
5.2.3 Precipitation Data
The precipitation maps used in thisdy are derived fromata provided

by Hydrosphere, Inc. on CD@Ms under the ameClimatedata The CD-ROMs
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contain ArcInfo point coverages, which ¢ate weather porting stations in the

US. and contain summary statistfos those gations. More detailed data—daily,

monthly, and annual figures for the period of recordeath statn—are

included in tables, which must be read with Hydrosphere's proprietary software.
Because the summary data u$edthis study was not theame as that

included with the Arc/Info coverages, the following procedure was followed to

produce Thiessen polygon maps of average reportedcilaatfstations in Texas

and a 100-km buffer around Texas during the years from 1951 to 1980.

1. The Arc/Info coverages ctaining weather stations in Texas and adjoining
states (New Mexico, Oklahoma, Kansas, Arkansas, and Louisiana) were
joined using the Arc command "mapjoin”. The resulting coverage was
trimmed to al00-km zone around Texas by applying the Armpwand
“clip" to the multi-state point coverage, usiiag the clip coverage a map
created with the Arc commanddiffer" appied to the outline of the
STATSGO map of Texas. Hily, the Arc command "reselect" was
applied to limit the coverage to precipitation stations only. This coverage
was named "prec_tx".

2. The station ID number, station namepaming year, and total namual
precipitationfor gations in the six-state aréar each yeafrom 1951-80
were written to a comma-delimited text file, usingydrbsphere's
software. This data was entered into BIRFO tablecalled "prec.dat” (see

definition in Appendix A).
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3. An INFO tablecalled "statbn.mean" (see definition iAppendix A), with one
record foreach of the stations in the coverage "prec_tx", was created to
hold the summary datr the pecipitation stations. The first year, last
year, and maximum gap in reporting was calculated following the
procedure listed as "yeaml" in Appendix B. This procedure, like the
one that tests the consistency of well locations, relies on external
programs to perform some analysis. Here, the external programs are
written in AWK (Aho, et al. 1988), rather than C. AWK is tpaularly
suited to oncekrough text ile operations like this, file opening
statements, variable declarations, and other overhead of C or FORTRAN
are unnecessary in simple AWK programs.

4. The procedure listed as gamean.aml" inAppendix B was followed to
produce average annualepipitation fgures in "tation.mean." This is
an example of the use of the relate/calculatehotktto calculate an
average.

5. The "statbn.mean" table was joined to the ygbn attribute table of
"prec_tx", associating thenaual averages with the station locations.
Stations with gaps greater than two years in theionteng histories were
dropped from the coverage.

6. A Thiessen polygon network wasatedfrom the reduced point coverage
with the Arc/Info canmand "thiessen". The portions of this polygon

coverage outside of Texas were removed using the "clip” command with
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the outline of Texafrom STATSGO, resliing in the polygon coverage

shown inFigure 3.15.
5.2.4 Fertilizer Sales Data

Like the STATSGO soil dta, the nitrate fertilizer sales data were
received already in thimrm of Arc/Info GIS coverages. Thet, asprovided
by the USGScame in theform of 6 coveragesach a map of theoanties of
Texas with attribute data attached listing estimated fertilizer $atea single
year for the period 1986—91. This data was reorganized for use in this study.

A new INFO tablecalled "nitrate.use" (se@ppendix A for defintion)
was created with one rex per county, andtems for each year's estimated
nitrogen fetilizer sales and "use" (sales in tons divided by areaohty). The
total estimated fertilizer sales and "udet each ounty wascalculated by
summing and averaging the annual figures, and listed in additional items.

After the fertilizer data table was created, all but one of the original
coverages were deleted. The remaining coverage was usedoasity base
map. Where fertilizer data was used in th&dygt it wasattached to this base

map through the use of a relate.
5.2.5 Water Utilities Division Data

Nitrate monitoring data collected by the Water Utilities Division (WUD)
of the Texas Natural Resource Consgion Commission were received in the
form of an Arc/Info Coverage, ctaining well locations and descriptions, and
two data tables, one, called "poe", containing system and point of entry

identificationsfor each water@urce known to WUD, the other daming, called
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"nitrate", containing reards of nitate measurements collected at points of entry
to the water systems. The tables were received in dBasat, translatedrom
the Paradox database maintained by the WUD.

The dBase files were read as PC Arfd data files and translated into
equivalent NFO tables using EXPORT in PC Anafo to create transferable text
files, transferring the text files to theovkgation with ftp, and usingMPORT in
Arc/Info on the workstation to create INFO tables from the text files.

The nitrate, nitrite, and combined nitrate and nitrite concentrations
reported in the "nitrate" table were oeded in text ields so that the character
"<" could be used to indicate measurements below the detection limit. This
makes numerical analysis of the data difficult, so two additional items were
appended to the table feach concentration item: one single character field to
hold the "<" characters, and a numerical field to hold the concentration value.
The resulting table has item definitions listed Appendix A for the table
"nit.wrk". The item ho3fl" was set equal to "<" foall records with a "<"
character in the nitrate results column. The numerical valaesnitrate
concentrations were added to the table by writing the record number and nitrate
values to a text file, removingon-numeric charctersfrom that fle with a text
editor, witing the remaining numeric values to a forary NFO table with the
ADD FROM command and joining the temporary table to "nit.wrk".

The WUD data tables wefartheraltered in theorocess of comparing the
nitrate measurements they contain with predictions nfize the TWDB dta.

These alterations are describedirtion 5.8.
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5.2.6 Midwest Herbicide and Nitrate Data

Because of the lack of comprehensive herbicide measurement data in
Texas, a comparison of nitrate and herbicide detections was made using data
from Kolpin, Burkart, and Thurman (1993). The comparison is simple enough
that it is fully described irSection 6.5where the results are discussed. The
preparation of the data was somewhat more complex.

The data, describing well locations, geologic settings, and construction,
and the results of water quality analysis, were available only psbhshed
report, so the values were read into a computer texiwith a scanner and a
characterecognition program on an Apple adintosh microcomputer. The
contents of the text file were transferred to an Excel spreadsheet where they were
parsed into columns. The values in the spreadsheet were compared with the
tables in the report and corrected as necessary.

Two INFO tables, onéor well data and onéor water-quality data, were
defined (see "construction" and "quality” Appendix A). Separate items were
defined for flags, such as the "<" chater to indicate concentrations below
detection limits, and the numerical concentration values. The spreadsheet values
were exported as oama-delimited text and transferred to therkgation, where
they were loaded into the data tables using A FROM canmand in
Arc/Info's TABLES module.

Because nitrate wasperted only as the sum of nitrate and nitrite, a new
item for nitrate values was added and values were calculated by subtracting the

nitrite concentratiorfrom the nitrte/nitrate total. Where nitrite was below the
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detection level, the nitrate value was set equal to the nitrite/nitrate sum. All

nitrite and nitrate values in this data set are reported in equivalent nitrogen units.
5.2.7 A Note on Map Projections

All maps used in the study were in an Albers equal-arej@giron with

the following parameters:

Units: Meters

Datum: 1927 North American Datum (NAD27)
1st Standard Parallel: 29 30' 00"

2nd Standard Parallel: 45 30' 00"

Central Meridian: -96_ 00' 00"

Latitude of Origin: 23_00' 00"

The US Geological @vey uses this pjection for its National Atlas of
the United States, which many agencies uggduide base maps for a vetly of
thematic maps. In fact, all the prdased dta used in this sty (STATSGO,
nitrate data, and precipitation station locations) was originally delivered in this
projecton, so that no re-pjection of maps or GIS coverages was required for
any of these data. Locations of wells andlibendaries of 7.5' quadrangles were
given in unprgected latitude andohgitude, and the quadrangle maps were

generated in this form, then transformed into the Albers projection.
5.3 CALCULATION OF DATA DERIVED FROM STATSGO

The STATSGO dtabase, aprovided by the Soil Conseation Service,
does not provide values for average soil layer thickness and average organic
material contenfor the map units. As described &ection 3.3 these values
were calculatedhtrough a process that, in eft, integrates soil parameter values

through the layers of the soil components and then averages thosatedegr
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parameters, weighted by cponent area, over the map units. Here, the steps
required to carry out the integgion and averaging process in Arc/Infdlvbe
described. Within a STASGO soil corponent, the process fealculating soil
thickness is simple, the process éailculatingorganic content is more complex.
Once the parameter values are calculdtedthe components, the averaging
process over the map units for bothgraeters is identical. All thrggrocedures
are described here.

For the calculation of derived data, the STJ0O map unit, coponent,
and layer data tables were copied to new tables calleddy:stapu”,
"study.comp”, and "study.layer" to avoid corruption of the origiitesf Most of
the items not requiredor soil unit identifcation or for calculation of the
parameters of interest to thisudy were dropped from the new tables. The
definitions of the resulting tables are listeddippendix A.
Defining Keys for STATSGO Tables. Calculating the map unit averages for
parameters listed in the cponent and layer tables begins with the dgén of
a unique identifier (a key itenidr each corponent. Together, the map unit ID
and the sequence number for a component make up such a unique identifier.
Since the two are listed in adjacent fields in the data tables, they can be
combined through a redefine op&on, $milar to that which extractetl-degree,
7.5-minute, and 2.5-minute quadrangles from tledl D numbers in the TWDB
well tables. The set of adjacent bytes that make up the map unit ID and the
sequence number were redefined as an item called "mapseq" inutig csmp"

and "study.layer" tables, providing a key for relating the two tables.
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Calculating Soil Layer Thickness. STATSGO lists many soil pameters,
including soil depth and organinatter content, as ranges, defined by a low and
high value. Item namder low values end in "L", andamedfor high values end

in "H". For example, the items "LAYERDEPH" and "LAYERDEPL" contain

high and low values for depth of a soil layer, i.e. the depth to the top and bottom

of the layer. Because the thickness of the soil pmmnt is simply the
maximum of the high values of the depth of the layers that make up the
component, the Arc eomand "statistics" can calculate the gmment thickness

in a few steps, as follows.

1. Invoke the STATISTICS eomand to calculate summary statistics on the
layer table foreach unique value of the "mapseq" item, and write the
results to a new INFQIlé called "maxdp.dat”. The syntax for this
command is
statistics study.layer mapseq maxdep.dat
Arc then asks for the spific statistics to be calculated. The gqmment
thickness is equal to the maximum of the item "LAYERDEPH".

2. Join the table resulting from thtatstics operation to the cqranent table
using the JOINITEM command with "mapseq" as the key item.

3. In TABLES, change the name of the new item in thepmmant table from
"max-layerdeph" to "soilthk" using the ALTER command.

Calculating Soil Organic Content. The process of calculating asrganic

matter contenfor each corponent is more contigated, because therganic

matter is given as a percentage by weight, so that it must be multiplied by the
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bulk density (gm/cr) to produce aneanngful number when integted over the

depth of the soil layer. Since both the orgamatter content and the bulk

density of the soil are expressed as ranges, this requirealthation of several
different values. The procedure is as follows.

1. Add items OMM" and "BDM" to the layer table to hold valués the mid-
range of organimatter and bulk density, respectively. Add items "MIN-
ORG", "MID-ORG", and "MAX-ORG" to the coponent table to hold
minimum, mid-range, and maximum values for organic content &g/m
in the component.

2. In the layer table, calculate thedwange values of organimatter fraction
and bulk density as one-half the sum of the minimum and maximum
values.

3. Using a relate based on the redefined "mapseq" item,the layer table, add
the product of the mid-range values of the organatter fracton, the
bulk density, and the thickness of each soil layer to the "MID-ORG" item
of the corresponding component in the component tablecalse each
layer in the component iliv contribute to the sum in the cgmanent
record, this has the eift of summing theproducts (or numecsally

integrating) over the layers of the component.

4. Repeat step 3 with the minimum and maximum values to establish the range

of values.
The amlprogram "org_inaml" (SeeAppendix B was used to carry out

steps 2—-4.

178



The two procedures described above produce the soil thickness and
organic content for individual soil components from the layers that make them
up. A third procedure, which followsalculates the average over a map unit of a
parameter evaluated in all the components that make up that map unit.

1. Add an item to the map unit table to hold the average value for the parameter.
2. Using a relate defined on the map unitfidm the component table add the
product of the pameter value and the fraction of the map tmined by

the component to the neitem in the map unit table. Because each

component in the map unitilvcontribute to the sum in the map unit

recordaccording to the area it contributes to the map unit, this produces
an area-weighted average of the component values in the map unit table.

The aml program "unit_av@gml" (SeeAppendix B carries out these
steps, and also sums the componeadtfons of the map units as amae test. |If
the area percentages of the components of any mapailniv fsum to100, the

program notifies the user.
5.4 PREPARATION OF QUADRANGLE M APS

The Texas Water Development Board doespnotide a GIS coverage of
the quadrangles that provide the basis for th&li-mumbering sym. Since
this study uses these quadrangles as grouping unitgdtstisal analysis of
water quality data, quadrangle maps were required foottisplay of satistics
and for the calculation of quadrangle averages of the potential indicator
variables. The anprogram "build_quadsaml" (seeAppendix B constructs an

Arc/Info polygon coveragecalled "TWDEB_7M" in geographic (unpjected
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latitude and dngitude) coordiates. It calls the externpfogram "tx_7m.c" (see
Appendix B to create theaordimate file used by the Arc GENERATE command
to create the coverage. The gonbgram uses the Arc nomands GENERATE
and CLEAN to build the polygon coverage, dittle explanation bgond the
function of these commands described by Arc/Info docuatem $ould be
required.

One subtlety, howeverheuld beilluminated. Theprograms assign four-
digit integers to the quads as polygon ID numbers. In the polgtiohute table
(PAT), the ID is automatically assigned the namedttw/m-id" and thdtem
type "B", or binary-coded integer. A netem called "qud_7.5m" of type "I",
or one-byte-per-digit integer, was added to the PAT. The values iietmsand
the ID number are identical, but tiremats are different. This new item in "I"
format provides a key foralates used to link the PAT to the TWDB well and
nitrate measurement tables, where the quadrangle numbers are also stored as type
1"

The quadrangle map was projectedm geographic (ecimal degrees)
coordirates to the Alberprojection usedor the study. The reHiing coverage
was named "quads_7.5".

To identify quads with the five study aquifers, a new tabéled
"ag_quad.dat" was eated by extracting the quad numbers with the
PULLITEMS command. A single-digit integéem was added to this new table
for each of the five sidy aquifers, and one morem was added tootint the

number of study aquifers assated with the quad (item definitions are given in
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Appendix A). The following commands set the CZWX item i "guad.dat” to
a value of 1 foreach quad containing a well associated with the Carrizo-Wilcox.
A relate called "quad" links ¢b.wells" to "aj_quad.dat" by theitem
"quad_7.5m".

select ag5.wells

reselect agf = 'CZWX'

calc quad//czwx = 1
A similar set of commands set the fldgsthe emainingfour aquifers. The sum
of the aquifer flags in each re@ wascalculated and assigned to the item
"ag_cnt". Records with "aq_cnt" equal to zero were purged from the table,

leaving only reords of quads assmted with one or more of theusly aquifers.

This table was used to produce the aquifer quad mamine 6.15.
5.5 CALCULATION OF STATISTICS

Two types of statistics were calculatied the nitate measurement data
in the TWDB database:

1. Estimates of thprobalilities that a single threshold concentration level will
be exceeded (discrete probabilities).

2. Estimates of the parameters of an assumed concentiaitodrablity
distribution (log-normal parameter fitting).

The discrete probablity and log-nomal parameter estimates are
calculatedfor groups of measurementsormed by 7.5 quadrangle, and by
aquifer. The mathematical meanings of theseeedures have been discussed in
Chapter 4 here, the details of oging out the opeations with Arc/Info and

external programs will be described.
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5.5.1 Discrete Probability Estimates

The various programs used toalculate estimates of the discrete
probalilities all operate using essentially the saptecedure. Counting &lls,
measurements, and measurements exceeding thresholds is carried out in
TABLES by the following steps.

1. Create a table to hold the results of the calculations, with oasdriez each
group (county, quad, or aquifer) to be considered. To supportlites

that make the calculations possible, one item, used to identifyrthgp,

must be identical to an item in the well and nitrate measurement tables.

An example, the table for 7.5' quadrangles, "counts.quad", is listed in

Appendix A (If necessary, aitem identifying thegroup can be added to

the measurement table byppying datafrom the wvell table. This was

done for couties and aquifers, which were not included in the original

definition of the measurement table.)

N

. Create a relate to link the results table to the well and measurement tables.

w

. Select the well table, and using the relate, add one to the item "WELL_CNT"
in the results table foeach reord in the vell table. Thisproduces a
count of the wells in each group.

4. Select the measurements table, and using the relate, add one to the item
"MEAS_CNT" in the results table farach reord in the vell table. This
produces a count of the measurements taken in each group.

5. Restrict the selection to measurements with nitrate values exceeding the

detection limit, and add one to the item "DTCT_CNT" in the results table
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for every record in the reducedlscton. This produces a count of the

measurements in each group that exceed the detection limit.

6. Repeat step for the cetection limits of interest to theusty. Here, levels of
1 mg/l, 5 mg/l, and 10 mg/l nitrate as nitrogen were used.

7. Select the results table and calculate estimates of exceguieba#lities by
dividing the number of detectionbave the thresholtimits by the total
number of measurements.

Steps 2-7 are carried out by tlanl programs "count_quaaml",
"count_acaml”, "count_aqqua@ml”, and “"ount_countyaml|® for 7.5
guadrangles, the five study aquifers, quadrangles migasurementfrom the
study aquifers, and counties.

The above procedurealculates the best estimate of the exceedence
proballity for the various threshold levels, but does not provide confidence
intervals on the estimatesConfidencelimits are calculated using an external
FORTRAN program (bino2.f ilppendix B. The program uses a culative
binomial distribution estimatiofunction found in a tatistical function library
called SCDFLIB(Brown and Lovato, 1994). The following procedure adds
confidence limits to the probability estimates calculated above.

1. Create a series of tpwrary NFO tables to hold the results of the
calculations. The items in the tables include ghaup (county, quad, or
aquifer) identifier, upper and lower bounds for the confidence interval on
the exceedencprobalility for the chosen threshold, and the difference

between the upper and lower bounds.
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2. Select theNFO table cotaining the measurement and threshold exceedence
counts for the groups, and iter a text file containing the identifier,
number of measurements and number of threshold exceeden&zsh
group. This file becomes input to the confidence limit program.

3. Call the systerprogram (bino2) t@alculate theupper and lower confidence
limits. Thisproduces a textilé containing the identifier and the lower
and upper confidence limits for each group.

4. Read the contents of the text output from the confidémit program into
the temporary INFO tables.

5. Add the confidenckmits to the table containing the exceedepcebalility
estimates with the JOINITEM commd. The defiition of the resulting
table, called "bino.quad" is given Appendix A.

The aml program "bino_quadml" in Appendix B carries out this
procedure fomll the7.5' quadrangles withell datafor the 0.1, 1, 5, and 10 mg/I

thresholds .
5.5.2 Lognormal Probability Estimates

In addition to the discreteprobalility estimates, the best-fitting
parametersfor a lognomal distribution were calculatedrom the nitrate
measurements in each quadrangle. The follownogedure used taccomplish
this task.

1. Sort the table "include.nit" by quadrangle number, and write the quad number
and adjusted nitrate readifigr each nitrate measurement to a text file

called "fit.in" using the TABLES "UNDAD" command. The textile is
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used as input to a C program that carries out the next steps. Sorting the
nitrate data by quad number assures that the data imgthe fle is
grouped by quad.

The systenprogram "logfit" (see "logfit.c" inAppendix B reads the two
fields from each line of theriput fle, appending each nitrate value (the
secondikeld) to an array. The array continues to grow as long as the same
guad number is read from the first field of the line being read.

When a new quad number is found, the array is sorted, counted, and
numbered. For each value of nitrate concemnatithe log of the
concentration, the value of Blom's tilag position for the highest-ranked
entry with that value, and the normal variate (@jresponding to that
plotting position are calculated.

When all the concentration values associated with a quad have been
converted into log values and nual variates, a linear regression (using a
function from Press et. al (1988)) fits the following equation to the data:

Z =a+ b(log(C)).

The mean of the log concentrations is calculated as -a/b, and the standard
deviation of the log concentrations is calculated as 1/b.

Probabities of exceeding0.1, 1, 5, and 10 mg/l aretesated from the
lognormal parameters.

The lognamal parameters, descriptive statistfos the regression (F, t2r
standard error, and sigiménce of F), and exceedengwobalility

estimates are written to an output file.
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8. Steps 2-7 are repeated until the input file is exhausted.

9. The contents of the output file are entered intoN&Ol table, which can then
be related to quadrangle maps, or the discpeddallity estimates for
plotting or comparison.

The definition of the INFO table dhfit.quad” is presented ippendixA

The programs "logfiamlI" and "bgfit.c" carry out the steps listed above, and are

listed inAppendix B
5.6 MAP PREPARATION

Each map in this document was prepared in the Arcplotiube of
Arc/Info. The map compdson was set by a series of Arcplot commands in an
aml program, the output of which could beeatited either to the computer screen
or to an Adobe lllustratoileé. Theprogram was rewten and executed several
times with the output directed to the screen. When a satisfjachap
composition was set, the program was run a fima¢ with output directed to an
lllustator file. The amprogram "gtl_ploaml" in Appendix B which was used
to preparé-igure 6.4 is an example.

The map compositions created in Arcplot had no legends or captions.

These were added by transferring the map file to an Apple Macintosh computer

and adding labels and a legend with the Adobe lllustrator program. The maps

themselves were not edited in thi®cess, so that the infoation they contained

would not be altered. Colors in the maps were set using the CMY (cyan magenta

yellow) color scheme. Because both Arcplot and lllustrator permit colors to be

set by numerical values on the CMY scales, it was possible to create legends in
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Illustrator that exactly matched the map colors created by Arcplot. The CMY

components of the shades used in the figur€hampter Gare listed inrable 5.2.

Table 5.2 CMY Components of Probability Map Colors

Probability Cyan Magenta Yellow
> 80% 0 100 100
60-80% 0 35.3 100
40-60% 0 0 100
20-40% 39.6 19.6 80.4
<20% 100 0 100

All county maps anall quadrangle maps were creafeain one county
and one quadrangle coverage. For example, all of the maps of quadrangles,
regardless of the theme or shading scheme, were genématedhe coverage
quads_7.5, which was eated by theprocess described iBection 5.4 The
shading and coloring of the maps @hapter 6to show quad exceedence
probalilities at various thresholds waene by elating the quad coverage to the
counts.quad, logfit.quad, and bino.quad tables. This assured consistency between
the maps and reduced the storage demands on the computer where the study data
were stored. The use of related data to set a shading scheme is also illustrated in

"gtl_plot.aml".
5.7 INDICATOR VALUES AND STEPWISE LINEAR REGRESSION

The variation of the nitrate exceedenmbalilities was compared to
variations in theproposed ingtator parameters in thé.5' quadrangles using
stepwise multiple linear regressi. Average pameter values had to be
calculatedor each quadrangle, so that these values could be compared with the

exceedence probability estimates.
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Area-weighted averages of soil parameters was calculeteceach
guadrangle by the following procedure.

1. The STATSGO map unit coverage and T™e& quadrangle coverage were
combined using the Arc/Info "intexst” commad. This produced a
polygon coverage imilar to the simple example inFigure 5.4.
Quadrangles are subdivided intmaler poygons by the boundaries of
the STATSGO map units. (The soil pgbns in the example are much
simpler than actual STASGO map units so that tigroportion of the

guads in each soil group can be estimated easily.)

Soil Thickness

a2
o e
- Water

Figure 5.4 Simplified Quadrangle/Map Unit Intersection

2. The soil area in each quadrangle (i.e., the area not covered by water) was
summed into a table called "paramsad". If the quadrangles in
Figure5.4have unit area, the soil areas of quads 1 and 3 are 0.75 and the
soil areas of quads 2 and 4 are 1.0.

3. For each pgbon, the product of the area and theapagter value were added
to an item in the rewd of "params.quad"” corresponding to the

guadrangle from which the polygon was divided. For soil thickness, this
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item is called "thkar." The value of "thkar" in quads 1 and 3 is 12; in

quad 2 itis 18; in quad 4 it is 24.

4. The area-weighted parameter average is calculated by dividing the
guadrangle sum of the area-parameter values by the soil area of the
guadrangle. The value of "av-thk" for quads 1 and 3 is 16; for quad 2 it is
18, for quad 4 it is 24.

Steps 2-4 of the above procedure are carried out irartleprogram
"aw_avg.aml" inAppendix B.

A similar procedure was followed talculate area-weighted averages for
precipitation and nitrogen fertilizer applications.

The area-weighted-averaging process resulted in tHEOI table
"params.quad” which is defined iAppendix A. This table was linked to
"counts.quad" with aelate, and the exceedengeobablity estimates and
average parameter valus each quadrangle were written to an external text
file. This file was transferred to BOS computer where the stepwise linear
regression was carried out using the program STAARBRCS, version 4.0

(STSC 1989)
5.8 EXCEEDENCE FREQUENCIES FROM WUD DATA SET

The nitrate measurement data collected by the Water Utilities Division
(WUD) of the Texas Natural Resource Cons¢ion Commission is described in
Sections3.6and5.2.5. In order to link the niate measurement data to the well

locations, and to TWDB quadrangles, the following procedure was followed.
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1. Working copies of the point of entry and att measurement tables were
made. These were named "poe.wrk™ and "nit.wrk". The pws-gwt well
coverage was projectefiom its original coordiate system into the
system used for this study, resulting in a coverage called "pws".

2. The pws coverage was overlaid with tB' quadrangle coverage, using the

Arc command "IDENTITY". The resulting coverage was called pws-
guad, and assigned a quad number to each well in the pws coverage.

3. Aredefined item concatenating the water system id and the point of entry was
added to the tables poe.wrk and nit.wrk and the point attribute table of
pws-quad. Thistem, called "sysent" acts as a kiy linking the three
tables.

4. A temporary tablecalled poewsrf was ceated by opying poe.wrk and
purging all recmrds comaining agroundvater surce (identified by the
letter "G" as the first character in the wateurce entry). This was
linked back to poe.wrk by a relate on the sysent item. Evenrddn
poe.wrk that had a related oed in poe.surf was purgetkaving only
points of entry with no surface water sources in poe.wrk.

4. A temporary tablealled "wellquad" containing well IDs and quad numbers
was createdrom pws-quad.pat using the arcnomand "PULLITEMS".

This table was joined to poe.wrk using the Arc command "JOINITEM".
After the join, all reords with quad numbers equal to zero were purged

from poe.wrk, leaving only records that could be linked to TWDB quads.
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5. Atemporary tablealled "poequad" containing the iterios sysem ID, point
of entry number and quad number was credted poe.wrk using
"PULLITEMS". The contents of this table were sorted by system ID and
point of entry number, then written to a text file calledidadl” with the
tables "UNLOAD" canmand. This textile wasprocessed with the AWK
program
awk -f, '$1 I=lastl || $2 != last2
{last = $1; last2 = $2; print $0}' pquadl > pquad2
resulting in a file with one entrfor each point of emy, cortaining the
identity and a quadranglr that point of entry. (Theatt that this
operation could be carried out by so brief a progilumstrates the utility
of AWK.) The original contents of poequad were purged anthcep
with the values in pquad2. Thisethod assigns the quad of the point of
entry's first well as the quad of the point. This is somewhat arbitrary if a
point draws watefrom wells in more than one quad, but since most
points draw eithefrom a single wll or wells in a single quad, this
method was judged acceptable.

6. The poequad table was joined to nit.wrk, using "JOINITEM", assigning a
guad number to each nitrate readingm a purely groundater ®urce
traceable to a map location.

7. ltems were added to the tableotiats.quad” to hold the number of nitrate
measurements, threshold exceedensents, and threshold egedence

proportions for each quad
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8. The amlprogram "count_wudml" (seeAppendix B)was run to count the
measurements and exceedences, and to calculate the exceedence

proportions by quad for this data set.
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Chapter 6: Results

This chapter contains six sectionsSection 6.1reports the results of
statewide analyses of nitrate concentrations in Tgrasmdwvater as rported in the
TWDB groundvater data system. Maps and bdgtams in this section show the
variation of the estimategdrobabhlity of nitrate detection by locatn, discetized
into 7.5' quadrangles in the horizahdimensions only. In addain, graphs present
variations in nitrate detection frequency with depth and with tinneughout the
state.

Section 6.2hows much the sameformationfor five aquifers slected for
additional study. Vaations in nitrate detection frequency in two dimensions, with
depth, and througtime are presented. In addii, the behavior of niate in the
different aquifers is compared.

Section 6.3hows the results of the attempt torelate indicator variables
to the variations in nitrate detection rates. Regression rdsultsoth $atewide
and single-aquifer data are presented.

Section 6.4compares the nitrate detection rates calculated the TWDB
data with an independent set of nitrate measurements collected by the Water
Utilities Division of the Texas Natural Resrce Consemation Commission as part
of their Primary Drinking Water Standards enforcement program.

Section6.5 presents the results of a comparison of the occurrence of nitrate
and herbicides as perted in the US Geological uB/ey's reconnaissance of
groundwater in the mid-continental United States.

Section 6.Gresents a brief summary of the results.
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Note that al nitrate concentrations in this chapter are given in equivalent units of
elemental Nitrogen (nitrate-N). The Primary Drinking Water Standards define the maximum
contaminant level (MCL) as 10 mg/l nitrate-N. The equivalent concentration in nitrate-NO3 is
44.3 mg/l.

6.1 STATEWIDE RESULTS

Table 6.1 shows the total number of nitrate measurements in the base data set (46,507
nitrate measurement records) that exceed four threshold concentrations. The thresholds are 10
mg/l (the MCL), 5 mg/l (half the MCL, and a trigger level for increased monitoring), 1 mg/l
(selected to indicate human influence on groundwater, as described in Section 4.1), and 0.1 mg/I
(the detection limit selected for this study, as described in Section 3.1). The table also lists the
estimated probability of exceeding these thresholds in a measurement selected at random from a
well in the State, and the upper and lower bounds on the probability estimate (90% two-sided
confidence limits). These probability estimates are based on the assumption (described in
Section 4.4.1) that the nitrate measurements compose a sample generated through a Bernoulli
Process, resulting in a binomial distribution of threshold exceedences. The exceedence
probability estimates are calculated by dividing the number of measurements exceeding the
threshold by the total number of measurements. The upper and lower bounds on the estimates
are calculated using the method described in Sections 4.4.1 and 5.5.1. Because the number of
measurements used to calculate these estimates is large, the upper and lower bounds are close to
the estimates. This is not the case when estimates are based on smaller numbers, such as those

associated with asingle 7.5' quadrangle.
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Table 6.1 Nitrate Exceedences in Texas (46,507 M easurements)

Threshold Exceedences Exceedence L ower Upper
(mg/l) Probability Bound Bound
0.1 29,643 0.6374 0.6337 0.6411

1 20,312 0.4368 0.4329 0.4405

5 7,411 0.1594 0.1566 0.1622

10 4,166 0.0896 0.0874 0.0917

Of the 4,407 7.5' quadrangles that make up the map of Texas used in this study, nitrate
measurements are reported in 3554. Exceedence probabilities were estimated for these
guadrangles at the four concentration thresholds by the same method as those in Table 6.1.
Figures 6.2, 6.4, 6.6, and 6.8 show the spatial distribution of the resulting exceedence
probabilities across Texas. An exceedence probability estimate was included in the statewide
maps if twelve or more nitrate measurements are recorded for the quadrangle. As shown in
Section 4.4.1, this means that for a 50% exceedence probability, the upper and lower limits of
the two-sided 90% confidence interval of the probability estimate are 0.25 and 0.75,
respectively. In somewhat less abstract terms, if a cell has an 50% exceedence probability
estimated from twelve measurements, that cell's true exceedence probability is greater than 25%
and less than 75% in nine cases out of ten. Cells with either more measurements or exceedence
probabilities closer to zero or one will have narrower confidence intervals.

Histograms of the probability estimates for the quadrangles are presented in Figures 6.1,
6.3, 6.5, and 6.7. Each histogram displays two sets of bars. The taller bars show the number of
guadrangles falling in the indicated probability range when all 3554 quads with measurements
are counted. This would include, for example, a quad with only one measurement (which must

have an estimated exceedence probability of 1 or 0). The shorter bars show quads falling in the
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indicatedprobabhlity range from which atleast twelve measurements have been
collected.

Exceedences of Detection LimitFigures 6.1 and 6.€how estimates of the nitrate
detection (i.e., measurement in excess 0of mg/l) probality in the 7.5
quadrangles.

At the detection limit of0.1 mg/l, nitate is safely within the range of
background concerdtions. Nearly a third of the quadrangles with measurements
(1160 out of 3554 quads) have never reported a comtiEmrat or below this limit
and in more than a third (1320 quads), fewer thanmeasurement in ten has
fallen at or below the detection limit.

The map inFigure 6.2shows that, althoughetkectable levels of nitrate are
found throughout thet&te, measurements below the detection limit are much more
common in eastern Texas. Of the 1158 mapped quadrangles, only one west of the
100th meridian (the eastern boundary of the panhandle) heteetidn rate below
20%.
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Figure 6.1 Nitrate Detection Histogram
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Exceedences ofLl.0 mg/l Threshold. Figures 6.3and 6.4 show exceedence
probabilities at the 1 mg/l level.

At 1 mg/l, the nitrate concentration is in an agumus range. Although this
is considerably higher than the normal kground level, concerdtions of up to 3
mg/l in groundvater are frequently attributed to naturausces (Madison and
Brunett 1985). At 1 mg/l, however, it is reasonable to be isimsps of human
influences.

Because there are fewer exceedences of the 1 mg/l concentration threshold
than of the detection limit, there are more quadrangles with near-zero exceedence
probalilities. Figure 6.4shows an increase in exceedepogbalility from east to
west similar to that seen in ti®®1 mg/l map, but regions of high aeedence
probalility are more local and less regional in scope. The difference between the
Carrizo-Wilcox Aquifer and the adjacent Balcones Fault Zone of the Edwards
Aquifer (seeSection 6.2 is quite apparenfor example. This result isrsilar to
observations by Baker et al (1994), who noted that "Riedley aquifers, sandy
soils with high water tables, karst areas, and reef structures wifltia
expressions arall reflected in ounty maps" developed as part of a voluntary well

testing program.
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Exceedences of 5 mg/l Threshold. Figures 6.5and 6.6 show exceedence
probabilities at the 5 mg/l threshold.

Nitrate concentrations at obave 5 mg/l due to natural sources are not
unheard of, but are very uncommon. Consistes@surements of nitratbave this
level clearly indicate either an extrainarily strong natural source, or the
influence of human activities. Also, this concentration is one-half of the MCL for
nitrate and, although not considered high enough to endanger hueathhit does
trigger a switchfrom annual to quarterly monitoring for rate inpublic water
supplies using groundwater (40 CFR 141).

Of the 1158cells mappedl1124 have an émated exceedengarobablity
of 0.0 at the 5 mg/I threshold—in only 34 of these quads has a cateam@bove
this level been measured. The east-to-west trend of increasing exceedence
probalility seen in the previous maps has been replaceddrpwp ofcells in the
western part of north-central Texas, ancdattering of isolated cells mostly in the

western part of the State.
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Exceedences of 10 mg/l Threshold. Figures 6.7and 6.8 show exceedence
probabilities at the 10 mg/l level.

At 10 mg/l, nitrate is considered a human health fthzand pubc water
suppliers are required to notify thmublic and take action to reduce the nitrate
concentrations when they exceed this lev€bncentrations at this level are very
rarely due to natural sources. The vast majority of cells with measure(2@a&
of 3554) have never had a measurement exceeding this limit.

The map of 10 mg/l exceedengmbalilities in figure 6.8shows only a few
guads where this high level of nitrate concentratiodoisnd often. Although
nearly one in twelve measurements listed in the base da(d,$66 of 46,507)
exceeds 10 mg/l, these elevated nitrate levels are very unevenly distributed in
space. The only region where exceedencedaared consistently, rather than in
isolated quads, is in westenorth-central Texas in an area roughly co-incident

with the extent of the Seymour Aquifer (seection 6.2.
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Upper Bound Exceedence Esthates. The exceedenceroballities shown in
Figures 6.1-6.@re all the best estimates of discrptebalilities, calculated by
simple division of number of exceedences by number of measuremeifusr at
thresholds. Figure 6.9presents the 95% upper confiderogit on the binomial
estimate of the 1 mg/l exceedenpeoballity. By combining the estimated
exceedencerobalility with a measure of theanfidence in that ésnate, this map
presents a conservative estimate of phabahlity of nitrate contamination in the
guadrangles. A cell has 88% upper confidenckmit value of0.95, for example,

if 100 measurements have been taken and 91 have exceeded the threshold, or if 1
measurement has been taken and that measurement did not exceed the threshold. A
guad can have a low exceedepeebalility only if many measurements have been

taken and few exceedences have been found.
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Lognormal Exceedence Esthates. In addition to the discrete exceedence
probalilities calculated by the binomial estimation imed, paameters were
calculatedfor the bestitting lognomal distributionfor each quadrangle with
twelve or more measurements§igure 6.10shows the spatial distribution of the
lognomal estimates of the 1 mg/l exceedepeebalilities for quads with ateast
twelve measurements and one detection of nitrate.

To compare the lognoral distribution to the discretgerobabhlities, Figure
6.11shows paired-value plots of the logmal and discrete exceedenm®balility
estimates at the detection limit, 1, 5, and 10 mg/l threshold concentrations. A point
on one of the four graphs isciated at oordimates equal to the binomial and
lognomal exceedencprobalility estimatesfor one quadrangle. A poinalis on
the diagonal line if the two estimates are identichdva the line if the lognormal
estimate is larger, and below the line if the binomial estimate is larger. In
comparison to the binomial estimates, tbgnomal estimates tend to be higher at
the detection limit, 5 and 10 mg/l thresholds, and lower at the 1 mg/l threshold. At
the higher concentration thresholds, the logmadr distribution tends to over-
predict exceedences with Igwobalilities, andunder-predtt exceedences at high
proballities. One possible explanation of the differences in the predictions is that
the true probailbty distributions havedngertails (i.e., morgorobalility distributed

to extreme high and low values) than the lognormal distribution allows.
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Figure 6.11 Comparison of Discrete and Lognormal Exceedence Probability
Estimates
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A numerical analysis of the differences between the discreteogndrimal
estimates of exceedenggobaliities confirms what a visual ingetion of the
paired-value plots inFigure 6.11suggests. Afall four threshold values, the
hypothesis that the two tamates consistently differ can berdirmed with geater
than 99.9% confidence using the sign test (Helsel and Hirsch 1992). The more
commonly used paired-t test is inappiiape here because the differences between
the two estimates are natormally distributed (tested withrébablity Plot
Correlation Coefficient test). The results of these tests are listédlies 6.2and

6.3.

Table 6.2 Probability Plot Correlation Coefficient Test Results

Threshold PPCC Oppcc
0.1 mg/I 0.988 <0.1

1.0 mg/l 0.963 <0.005
5.0 mg/l 0.948 <0.005
10.0 mg/l 0.913 <0.005

The entry "PPPC" imable 6.2is the correlation coefficient between the
probalility plotting position values (using Blom's Formuliyr the binanial and
lognomal estimates of the exceedemqrebalilities for the listed thresholds in the
1134 quadrangles with &ast 12 nitrate measurements and at least one nitrate
detecton. The entry@ppcc is the significance level of the test—theobalility
that the differences between the two estimatesnarenally distributed. The
significance levels arexpressed as upper boundschuse the PPCC table in Helsel

and Hirsch only has exact values for up to 100 pairs.
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Table 6.3 Sign Test Results

Threshold n + Z

0.1 mg/l 1004 101 -25.3
1.0 mg/l 1053 626 +6.1
5.0 mg/l 918 343 -7.6
10.0 mg/I 800 236 -11.5

The entry "n" inTable 6.3is the number of quadrangles (out of the 1134
with both lognomal and binomial exceedenpeobabllity estimates) with different
values for the two eceedencerobablity estimates. The entry "+" is the number
of quads (out of n) in which the binmgal estimate is greater than theghormal
estimate. The entry "Z" is theormal variate arresponding to the probgiby that
the binomial estimates are consistently greater tharotjreimal estimates of the
exceedencerobalility. The normal variates are calculated by using the large-
sample approximation of the sign test, as given in Helsel and Hirsch.

So far, the variation of nitrate concentration of nitrate exceedence
proballities has been limited to the twhorizontal dimensions. Two more
dimensions, depth and time, have yet to be considered.

Influence of Well Depth. Figure 6.12shows the variation of the four
exceedence probabilities with depth over the State. The graph was prepared by
calculating the estimated probability of detecting nitrate at the threshold level
(number of exceedences divided by number of measurements) for all wells at least
as deep as the value shown on the horizontal axis. The values shown intersecting
the left vertical axis are equal to the exceedence probabilities calculated for the
46,507 measurements in the base data set. Values were calculated at ten-foot
intervals of depth. The markers on the lines of the graph are present to help

distinguish the lines, not to indicate points at which values were estimated.
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Figure 6.12 Variation of Exceedence Probabilities with Depth

A decrease in the likelihood oftecting nitrate at any threshold level is
clearly visible as shallower wells are excludédm the calculation of the
exceedencerobalilities. This decrease is mgstonounced as the athowest wells
are excluded, especially at the higher concentration thresholds. 4,186
measurements in exceedence of the MBJ834 (about 92%) were taken from

wells less than 200 feet deep.
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Figure 6.13 Measurements by Year in Base Data Set

Trends through Time. Figure 6.13shows the number of measurements listed in
the base data s#ir each yeafrom 1962 to 1993.Figure 6.14shows the variation
of the four exeedenceprobablities with the year in which the nitrate
measurements were taken. In thispiwaa marker is plted for each exceedence

probability calculated for the measurements collected in each year.
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a) 0.1 mg/l Exceedence Probabilities

b) 1.0 mg/l Exceedence Probabilities

Figure 6.14 Variation of Exceedence Probabilities Over Time
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In general, the variabilitfrom one year to the next (possibly lesfting

changes in sampling locations) is much greater than any tresubhtime. Linear

regression of exceedenpeobalilities against time enfirms this for the dtection

limit and the 5 and 10 mg/I thresholds. The regression rdeuliise four threshold
concentrations are summarized Tmble 6.4 The fitted line is measured is
considered statistically significant if its t statistic is greater than 2, indicating a
probalility of less than 5% that the slope does not diffeem zero. By this
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measure, only the fitted linl@r the 1 mg/l threshold is sigmbnt. The slope of

0.003, indcates that the likeliood that a nite measurement selected aidam

from anywhere in thetate will exceed 1 mg/l has increased lput three-tenths

of a percent each year over the last 30 years. The data and the regression line for

this threshold are shown kigure 6.15.

Table 6.4 Regression Results For Threshold Exceedences through Time

Threshold  Slope t
0.1 mgl/l 0.002 1.33
1.0 mg/l 0.003 2.07
5.0 mgl/l -0.0005 0.42
10.0 mg/l -0.0008 0.83
1 | | | | | |
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Figure 6.15 Regression of 1 mg/l Exceedence Probability Against Time

Examination ofgroundvater nitrate measurements statewide shows that

there is considerable spatial variation in the liketid of eétecting nitrate at any
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threshold level. At lower concentrations, there is a general trend of increasing
exceedencerobahlity from southeast to northwest, which becomes maraliped

as the threshold increases. In general, deep wells are less likely to yield high
concentrations of nitrate than shallow wells. haligh trends in niate detection
throughtime are not sbng, a signitant increase with time in the likbbod of
detecting nitrate at the 1 mg/l level has bémmd. Since increases througime,
especially on a ashert atime scale as thirty years, areggestive of human
influence, this tends to confirm the usefulness of the 1 mg/l threshold as an

indicator of susceptibility of groundwater to human activities.
6.2 FLECTED AQUIFERS

This section rports nitate detections in wells associated with the five
aquifers selectefor special sudy. Figure 6.16shows the locations of the five
selected aquifers on a map of Texas. The map was createdodncading 7.5'
guadrangles by the aquifer associated with wells in that quadrangle. A quadrangle
was colored yellowfor example, if it cotains a well associated with the Hueco-
Mesilla Bolson Aquifer in the gtly's table of wlls. Because thieorizontal extent
of the Carrizo-Wilcox Aquifer and the Balcones Fault Zone of the Edwards Aquifer
overlap, the seven quads that contain wells in both of these aquifers were colored
black. The selection of wells to associate with the aquifers is descrilsetimn
3.2.3 which also includes a map of the TWDB's location of the aquifers'

boundariesKigure 3.9.
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Figure 6.16 7.5 Quadrangles Associated with Study Aquifers



Table 6.5 duplicates Table 3.6, listing the number of wells and
measurements associated with each aquifer, and also includes the numlar of
guadrangles shown for the aquifer kigure 6.15. Note that "Edwards (BFZ)"

refers to the Balcones Fault Zone of the Edwards Aquifer.

Table 6.5 Wells and Measurements in Selected Aquifers

Aquifer Wells Measurements  Quadrangles
Carrizo-Wilcox 2292 4597 433
Edwards (BFZ2) 412 1691 67
Hueco-Mesilla Bolson 404 1908 20
Ogallala 3483 4430 588
Seymour 1993 2526 76

Sectionss.2.1through 6.2.5 describe the results of aietgrof analyses of
nitrate measurements in each of the fivelgtaquifers. Foeach aquifer, a table of
exceedenceproballities, a map of the spatial distribution of the exceedence
probablities, and charts of variation of exceedenu®ballities are presented.
This is essentially the samaformation, presented in theasie manner, as was
given for the State as a wholeSection 6.1.

Section 6.2.6 presents summary infoation for all five aquifers and

compares the results among them.
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6.2.1 Carrizo-Wilcox Aquifer

Table 6.6 Nitrate Exceedences in the Carrizo-Wilcox Aquifer
(4597 Measurements)

Threshold Exceedences Exceedence Lower Upper
(mg/l) Probability Bound Bound
0.1 1124 0.2445 0.2341 0.2552
1 327 0.0711 0.0650 0.0777
5 113 0.0245 0.0209 0.0286
10 63 0.0137 0.0110 0.0169

Of the five study aquifers, the Carri¥@cox is the least contaminated by
nitrate. Fewer tha@5% of themeasurements listed in the database show even a
detectable level of nitrate. The nitrate detections occurowit much coherent
spatial pattern within the aquifeFigure 6.17, or with much variation with depth
(Figure 6.1, although 81 of the 113 nétte measurements exceeding 5 mg/l came
from wells less thar200 feet deep. It may be significant that the quads with the
highest 1 mg/l exceedengeobalilities are on the western edge of the aquifer,
which the TWDB identifies as an outcrop zone.

As with the State as a whole, there is more variabitgyn year to year in
nitrate detection rate than discernible tremaaghtime (Figure 6.19). Regression

of detection rates against time showed no significant trends at any threshold level.
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6.2.2 Edwards Aquifer (Balcones Fault Zone)

Table 6.7 Nitrate Exceedences in the Balcones Fault Zone of the Edwards Aquifer
(1691 Measurements)

Threshold Exceedences Exceedence Lower Upper
(mg/l) Probability Bound Bound
0.1 1581 0.9350 0.9243 0.9445
1 1248 0.7380 0.7199 0.7556
5 13 0.0076 0.0046 0.0122
10 4 0.0024 0.0008 0.0054

Although the lilelihood ofdetectingnitrate is lowest in the Carrizo-Wilcox
aquifer, the likelihood of ameasurement exceeding 5 mg/l is lowest in the
Balcones Fault Zone of the Edwards aquifer. The map of the spatial distributions
of exceedencerobalilities (Figure 6.2) shows no obviousatterns in detections,
but reveals a dramatic shifom high to low probaitities between the 1 mg/l and 5
mg/l thresholds. The same shift is visible when exceed@nakalilities are
plotted against well depth and time.

Figure 6.21shows a slight decrease in the likelihood efedting nitrate as
deeper wells are examined, but the trend is not clear until a deftBQsf et is
reached. A shardrop in nitate detections is associated with the deepest wells
(<1700 ft.), but since this is a vergnall number of wells, the significance of this
decrease is unclear.

No significant trendshrough time are seen in detection rates at any
threshold level. Figure 6.22shows detectiomprobalilities consistently close to
90%, and ezeedencerobablities at the 5 and 10 mg/l level consistently close to
zero. The 1 mg/l exeedenceprobalility shows considerable variation but no

consistent trend through time.
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Figure 6.20 Estimated Nitrate Exceedence Probabilities
by Quadranglein the Balcones Fault Zone
of the Edwards Aquifer
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6.2.3 Hueco-Mesilla Bolson Aquifer

Table 6.8 Nitrate Exceedences in the Hueco-Mesilla Bolson Aquifer (1908
Measurements)

Threshold Exceedences Exceedence Lower Upper
(mg/l) Probability Bound Bound
0.1 1506 0.7893 0.7734 0.8046
1 869 0.4554 0.4365 0.4745
5 63 0.0330 0.0266 0.0406
10 18 0.0094 0.0061 0.0139

Because the extent of the Hueco-Mesilla Bolson Aquifer is small, the
exceedencerobalilities shown inFigure 6.23have no discernible spatial pattern.
As in the Edwards, detections of nitrate and exceedences of the 1 mg/l threshold
are quite commn, butmeasurements exceeding the 5 and 10 mg/l thresholds are
rare. Figure 6.24shows very little variation in exceedemm®babhlities with depth,
the least in the five study aquifers.

Few nitrate measuremenfitdm the Hueco-MeaBa Bolson appear in the
database prior td980, making trends throughme difficult to detect. Figure6.25
might be interpreted to indicate increased exceedences of the 5 mg/l, but regression
of the exceedenceroballities against time shows no statistically significant

trends in exceedences of any of the threshold levels.

230



a) 0.1 mg/l b) 1 mgl/l
Threshold Threshold

L L

c) 5mg/l d) 10 mg/l

Threshold E@;ﬂ Threshold E;B

ExceedenceProbability
B >80%
60-80%
40-60%
20-40%

ﬂ <20%
<12 Measurements

Figure 6.23 Estimated Nitrate Exceedence Probabilities
by Quadranglein the Hueco-M esilla Bolson Aquifer
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6.2.4 Ogallala Aquifer

Table 6.9 Nitrate Exceedences in the Ogallala Aquifer (4430 Measurements)

Threshold Exceedences Exceedence Lower Upper
(mg/l) Probability Bound Bound
0.1 4164 0.94 0.9337 0.9458
1 3235 0.7302 0.7191 0.7412
5 549 0.1239 0.1159 0.1323
10 219 0.049436 0.0441 0.0551

As in the Edwards and Hueco-Mesilla Bolson aquifers, nitrate
measurements takdrom the Og@llala Aquifer are very likely to exceed 1 mg/l,
but much less likely to exceed 5 mg/l.

Of the five study aquifers, the @dala is the largest. The Texasrtion of
the aquifer provides ater over most of the panhandle, and the aquifer extends
northward through the mid-central U.S. Intspof its size, which would easily
allow for trends or division into sub-regions, the map Fmure 6.26 shows
variations in exceedengeoballities with no clear pattern visible. Detection rates
vary, espcially at the 1 mg/l threshold, but Wwdut exhilting trend or
regionalization.

Only one quad with twelve measurements or more shows a 5 mg/l
exceedencerobabhlity greater tharB0%. This quad was arined in more detail
to see if the high rate was due to the influence of a sjpogbely constrated well.

In fact, the 29 measurements taken in that quadrgnglaber 2835, between 101 _
37' 30" and 101_ 45" west longitude and 32_ 22' 30" and 32_ 30' latttide)

come from 27 different wlls. These are mostly shallow welgone is
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Figure 6.26 Estimated Nitrate Exceedence Probabilities
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deeper than 10Ceét—providing vaterfor domesic use. The region is in Martin
and Howard Couies, northwest of Big Spring, in a lightly polaied area
containing a number of small oil fields. Ap#&om the slallowness of the wells,

no obvious cause for the high incidence of exceedences suggests itself.

—8B— detect
—o— 1 mgll
—x- -5 mgl/l Number of
--+--10 mg/l Measurements
1 1 l ] 1 5000
— 4000
2
% =<
g — 3000 §
a g
@ 3
o 3
§ —2000 S
@ [}
i
— 1000
-0

0O 100 200 300 400 500 600 700 800
Minimum Depth (ft.)

Figure 6.27 Variation of Exceedence Probabilities with Depth in the Ogallala
Aquifer

Detection rates show little variation with depth in the Ogallala.
Exceedences of the higher thresholds (5 and 10 mg/l) are noticeably lower in wells
more than 200€fet deep, but no consistent trend with well depth is apparent in

exceedences of the lower thresholds.
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Figure 6.28 Measurements by Year in Ogallala Aquifer

Figure 6.28shows the number of nitrate measurements per year listed in the
data setfor the Ogllala Aquifer. Figure 6.29shows the variation of th&our
exceedenceroballities calculatedfor the same years. Statistically significant
trends throughtime can be seen in three of tfeur exceedenceprobalilities.
Regressions of exceedenu®ballities at the detection level, 1 and 5 mg/l have t
values greater thah0, indcating a95% or higher probality of a consistent linear
trend. Regression results arensoarized inTable 6.4(years with fewer than 12
listed measurements were excludeoin the regressions). Regression lines are
shown inFigure 6.2%or the three thresholds with sigicént trends. bablities
of exceeding the detection limit and the 1 mg/l threshold lgroen by about
0.3% per year over the period from 1962-1993, and the piitpadf exceeding

the 5 mg/l threshold has grown by about 0.8% over the same period.
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Figure 6.29 Variation of Exceedence Probabilities in the Ogallala Aquifer Over
Time

Table 6.10 Regression Results For Threshold Exceedences through Time in the
Ogallala Aquifer

Threshold  Slope t

0.1 mg/I 0.003 4.94
1.0 mg/l 0.003 3.88
5.0 mg/l 0.008 2.67
10.0 mg/l 0.003 1.95
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The increases in exceedenpeobabhlities in the Ogallala point to the
possibility of an accumulation of nitrates in the aquifer, which would almost
certainly be due to human influences. h8ligh the regressions for thea® as a
whole were barely statistically significant, the regressions in the Ogallala show an
unmistakable trend througime. This may be the mosbrvincing evidence of

vulnerability revealed in this study.

6.2.5 Seymour Aquifer

Table 6.11 Nitrate Exceedences in the Seymour Aquifer(2526 Measurements)

Threshold Exceedences Exceedence Lower Upper
(mg/l) Probability Bound Bound
0.1 2420 0.958 0.9508 0.9644
1 2368 0.9374 0.9289 0.9452
5 2073 0.8207 0.8076 0.8331
10 1435 0.568092 0.5517 0.5844

Of the five study aquifers, the Seymour is obviously the most highly
contaminated by nitrates. Every quadrangle with twelve or more measurements
from this aquifer has an @®ated exceedengwobalility greater thar60% at the 1
mg/l threshold, and only two have exceedenm®babhlities below 80%.

Figure 6.30shows a slight tendency toward lower exceedegmobabllities in the
southern part of the aquifer at the higher thresholds, but given the small extent of
the aquifer, it is unclear whether this is a significant trend.

Trends of exceedengmobabhlities with depth and with time in the aquifer
are difficult to interpret.Figure 6.31seems to indicate that shallower wells in the
Seymour are less likely to haeéevated nitrate levels than deeper wells, but given
that in the study atabase onlyour wells tapping the Seyour are as deep as 150

feet, there is little room for variation with depth.
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The sampling history of the Seymour aquifer is very uneven. In only three
years, (1967, 1970, and 1976) have more than 10&t@itneasurementsom the
Seymour been recorded and in 9 years fewer thaneldsurements were mded;
in 1984, none were recorded-igure 6.32may show a trend toward increasing
likelihood of exceedences of the 10 mg/l threshold, but the t statistic of a regression
on this probattity against time is1.95, indcating less tha®5% probabity that
the trend is significant. Given the high incidence of exceedences at all levels, it is

safe to say that the Seymour Aquifer is highly vulnerable to nitrate contamination.
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6.2.6 Aquifer Summary

Figure 6.33compares the estimated exceedepoabahlities at thefour
thresholds for thetatewide base data set afwt each of the five sidy aquifers.

The lines on the figures are provided as a visual aid and do rettrey
prediction for exceedenceproballities at intermediate thresholds. Thegure
reaffirms the trends discussed in the preceding sections. The Carrizo-Wilcox
clearly has the lowest nitrate concentrations of the five aquifers and has lower
exceedencerobablities at all thresholds than the state as a whole. The Seymour
clearly has the highest concentrations, and higher exceegeoltalilities at all
thresholds than the state as a whole.

The Edwards (Balcones Fault Zone), the Hueco-Mesilladdoland the
Ogallala have intermediate valules exceedencerobablities. In these aquifers
nitrate is more likely to béound at the 0.1 and 1.0 mg/I levels than in tia¢esas a
whole, but less likely to be found at the 5 and 10 mg/| levels than indteas a
whole. One possible explanation for thisig#ion is that all three aquifers have
porous compasons, which makes them very penetrable, and vulnerable to surface
influences. At the same time their permeability leads to more mixing than in more
tightly formed aquifers, and hence more dilution and fewer detections at high
concentrations. The lack ofrshg trends with depth tends to confirm this

possibility.
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Figure 6.34summarizes the nitrate measurements statewide and in the five
aquifers as histograms. Each bgtam approxnates the shape of thprobablity
distribution of nitrate concentrations in theresponding popation of water
samples. Note that the concentrations are expressed as logarithms. The graphs in
Figure 6.33approxmate the inverse of the cumulatiy@obabhlity of nitrate
concentrations in the state and the aquifers. The graphgtire 6.34approxmate
the probabity densities of the state and the aquifers. The shapes of the
distributions vary considerably from aquifer to aquifer. In generalidit of the
distributions (especially at the low end of the concentration range) areovngryas
represented by the high numbers at the detection limit. The daeyAquifer
comes closest to a lognormal distribution, but is very long in the tails at both ends.

Figure 6.35a sumarizes the nitrate measurements in the fivdysaquifers
in a different way, using boxplots. In a boxplot, the boxtams the central 50%
(between the 25th and 75th percentile) of the values in the plgitbegh, and the
whiskers extend to the lowest and highest values withirtirh&s the width of the
box. The Edwards and Seymour Aquifers show lgest variation in nitrate
concentrations, as illustrated by theroavness of their boxes. Points farther from
the boundaries of the box are & as circles or "outside" values (Helsel and
Hirsch 1992) The Hueco-Mdla Bolson has the smallest number of outside
values. Note that since more than 75% of theatétmeasurements in the Carrizo-
Wilcox (CZWX) are below the detection limit, the width of thex is zero, and

there are no whiskers on its plot. As a result, every
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measurement ovéx.1 mg/l is pléted as an outside value. This is another example
of the effects of censored data on statistical representations.

In boxplots of nomally distributed data, théoxes and whiskers are
symmetrical, andoughly one point in 100 is an outside value. Although the plots
for the Balcones Fault Zone of the Edwards Aquifer (EBFZ), the Ogallala Aquifer
(OGLL), and the Seymour AquifeBYMR) are roughly symetrical, which might
indicate bgnomal distribution (the plots are on a log scale), they have more
outside points than a normal distrilmrtj indcating a tail-heavy distribuin. This
is similar to the conclusion drawn earlieboait thelack of fit of a bgnormal
distribution to data from single quadrangles.

Another comparison can be made from thesa.d A seond boxplot,Figure6.35h
shows the distribution of well depths in the five aquifers. The two aquifers with the
shallowest wells, the Seyour and the Ogjlala, are also the ones with the highest
nitrate concentrations. This observation tends dofion the assumption that
shallowgroundwvater is more vulnerable than shalloweoundvater. However, the
Edwards and Hueco-Mesilla Bolson Aquifers, which have higher detection rates
than the Carrizo-Wilox, also tend to have slightly deepeglls than the Carrizo-
Wilcox. The elationship between depth and water quality remains somewhat

ambiguous.
6.3 INDICATORS AND REGRESSION

In order to evalate the predictive capacity of the potential indicator
parameters, a series of stepwise multiple linear regression wéoenped. Ineach
regression, an #@mated exceedencerobalility was taken as the dependent
variable, and average precipitaii average soil thickness, average soil organic

matter content, and mitgen fetilizer sale fgures were taken as the independent
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variables. Each of these variables was evaluated.®nquadrangles across the
State, as described i€hapter 5 The regressions were performed using
STATGRAPHICS, a statistical and graphic data analysis packag@ersonal
computer.

In stepwise multiple linear regressi an independent variable is added to
the model in the analysis if the additional imf@tion itprovides is signitant at a
chosen confidence level. As the model is being coctgtd, partial F statistics are
calculatedfor each variable notwrently in the model, as thougtach were the
next variable to be added. For a confidence level of 95%, a variable can be added
to the regression if its F value is greater tHad. At the ame time, partial F
statistics are calculatddr each variable already in the model, lasugheach were
the last added to the model. If the F statifticany variable in the modedliis
below the selected threshold, it is remo¥enin the model. See Draper anchigh
(1981) for a more comete discussion of this medd. The Ftisticsfor variables
included and not included are combined in a single column in the following tables.
The listed values are the partial F statistmsthe final glected modefor each
exceedence probability.

In the first set of regressions, every 7.5' quadrangle with twelve or more
measurements was included. These ard 138 quadrangles that were mapped in
Section 6.1.The regressions attempt to fit a model of the form

Pe=Rp+ 1T + O + [BR + YN (6-1)
where R is the exceedengarobablity in the quadrangldor threshold t, T is the
soil thickness, O is the organic content of the soil, R is the average annual
precipitaton, and N is average annual nitrogertiliger sales. The results of the

regressions are summarizedliable 6.12.
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The purpose of the regression igwarily to identify those parameters with
significant orrelation to the exceedengwobalilities, rather than to create a
predictive model. To thisngl, all the variables are shown in the table, whether or
not they were included in the final model.

The models resulting from the first two regressions listed able 6.12
include only the soil organic content and averagecipitation as independent
variables. In both cases, the precipitation is the more influential variable.
Precipitation decreases markedly in Texas with disténoce the coast, and nitrate
detections increas&dom southeast to northwest. The regressioneces the
parallels between these trends. That higher nitrate valudésuere where there is
less precipitatiomuns somewhat counter to imtion, since higher rechargates,
which are driven by precipitain, are usally associated with greater vulnerability
(as in DRASTIC). Possibly, higherqmipitation leads toh®rter residence time in
the aquifers, and lower concentrations as a result. It is less surprising that higher
soil organic content is assated with lower nitrate detections, sinoeganic
processes may tend to fix nitrate in the soil, preventingratn reaching

groundwater.
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Table 6.12 Regression Results for Quads with 12 or More Measurements

Threshold 2 Indicators Coefficient Partial F

Detection 0.414 Constant@3 1.201 --
Thickness (B) -- 0.215
Organic () -0.0065 45.31
Fertilizers () 0.906

1 mg/l 0.398 Constant(p 1.046 --
Thickness (B) -- 3.26
Organic () -0.00534 24.53
Fertilizers (1) '

5 mg/l 0.154 Constantp 0.1530 -
Thickness (@) 0.00369 39.42
Organic -~ 0.538
Fertilizers (1) 001510 51.38

10 mg/I 0.079 Constant@p 0.047 --
Thickness (@) 0.00234 27.85
Organic - 0.105

' 0.009497 35.79

Fertilizers (13)
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The regressions on detection and 1 mg/l exceedences Aavatistics of
roughly 0.4, meaning that the regression equation predittsutn 40% of the
deviationsfrom the mean value of therobablities. That only two variables
should prettt this much of the variation isugrising. More surprising is the fact
that regressions on precipitation alone yie?dvalues of 0.391 and 0.387 for
detection and exceedence of 1 mg/l. The predictive capability of the first two
regressions rests almost entirely on the invemeelation between rainfall and
nitrate exceedences.

The regressions on the exceedenpeobablities of the higher
concentrations have little meagi. Combiningall available variables tproduce
an equation with little predictive power, they simply indicate a general lack of
significant correlation between the dependent and the independent variables.

The second set of regressions, aiting the model given in equatids1,
was run on quadrangles d¢aming twelve or more measuremeritem wells
tapping the five study aquifers. These are the quads presented in the series of maps
in Section6.2. The results for these quadspsuarized inTable 6.13 are very

similar to thosefor the sate as a whole. Therganic material in the soil has
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Table 6.13 Regression Results for Quads Associated with Study Aquifers

Threshold 2 Indicators Coefficient Partial F
Detection 0.409 Constantd 1.289 --
Thickness (B) - 0.668

Organic () -0.0134 38.57

Fertilizers () 0.325
1 mgl/l 0.387 Constant(p 1.130 --
Thickness () 0.122

Organic () -0.0107 21.54
Precip. (B) -?.0192 116.79

Fertilizers (%) 0.070

5 mg/l 0.116 Constant(fp 0.202 -

Thickness () 0.0100 15.62
Organic (3)  -0-0070  11.14

- -0.0053 11.59
Precip. (3) ]
Fertilizers (1) 0.0254 20.01

10 mg/I 0.085 Constant@f 0.1600 --
Thickness () 0.0067 12.29
Organic () -0.0039 6.15
Precip. (3) -0.0031 7.03

Fertilizers (1) -0.0192 19.99
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more influence, but the equations contain the same independent variables and have
roughly the same predictive power.

The third set of regressions, summarizedlrable 6.14,is applied to the
same quadrangles as the @®t, but now a series of dummy variables have been
added, indicating the aquiférom which water was takerior the measurements
and soil thickness and fertilizer sales have bdr@pped from considation. The
model to be fitted is thus

Pt =+ R0 + R + (BC + KE + fH + (6G + (7S
where O and R have the same meanings as in the eqéaticand C, E, H, G, and
S are the dummy variables representing the CarrizoeXjilEEdwards(BFZ2),
Hueco-Mesilla Bolen, Ogaillala, and Seywur Aquifers, respctively. If the
measurements coniem the Carrizowilcox Aquifer, for example, the variable C
is assigned a value of 1. G is used to represent the Ogallala aquifer because O is
already used to represent soil organic content.

The results of the various regressions show that of the parameters tested, the
most influential by far in determining thprobalility of nitrate detection or
exceedence of threshold concentration is the aqdiiten which the water is
collected.

These regression results may be slightly misleading regarding the influence
of geologic parameters relative to the other indicators. For exampheugit
precipitationdrops out of the regression when the dummy variables for the aquifers
are included, this does not mean that it has no influence. The fact that the 1 mg/l
exceedencerobalilities in the Carrizo-Wilcox and Ogallala Aquifers differ by

roughly 67% may be in part due to the difference in averageataiofer
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Table 6.14 Regression Results for Quads Associated with Study Aquifers,
Including Dummy Variables for Aquifers

Threshold 2 Indicators Coefficient Partial F
Detection  0.809 Constant@® 0.857 -
Organic () - 0.200

- () -0.748 711.40

CW (1) - 2.118
ED (&) -0.199 11.37
HM (B5) -- 1.913
0G (%) - 0.125
SR (&)

1 mgl/l 0.787 Constant(} 0.736 --
Organic (3) -- 0.0002
Precip. (%) ” 0.879
CW (i -0.664 828.9

) - 0.052

ED (&) -0.373 34.33
HM (135) - 0.052
OG (%) 0.187 29.21
SR (%)

5 mg/l 0.758 Constant (3  0.021 -
Organic (13) - 0.566
Precip. (%) 88882
CW () - 0.0383
ED (&) - 0.0578
HM (135) 0.094 28.1
OG (f%) 0.779 939.9
SR (%)

10 mg/I 0.691 Constant¢yp 0.011 --
Organic () - 0.004
Precip. (%) 882(1)31
CW (1) - 0.0455
ED (&) - 0.0013
HM (135) 0.031 4.35
OG (f%) 0.545 653.4
SR (¥)
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in the parts of the state where they are located. Dummy varitdslegatially
distinct aquifers will subsume a great deal of spatially variable data.

A fourth set of regressions was run for the 1 mg/l threshottteence
proballity on quadrangles within single aquifers. Again, the model to be fit is
given in equation 6-1. The results of the regressions are sholabla 6.15 No
model could be fit to the dateom the Hueco-MdabBa Bolson Aquifer because the
number of quadrangles in that aquifer is too small.

The results of the regressions show that the selected indicators have very
little value within the aquifers. No significanbreelations werefound in the
Edwards or Seymour Aquifers, and the regressions in the Caiiizox and
Ogallala Aquifers have little explanatory power, as indicated by tReialues.

The final conclusion to be drawn from the regressions is that a model of
exceedencerobabtlities asgood as any that can be drawn from thdadatbr data
included in this study would apply averagecesdenceproballities for each

aquifer and ignore the other indicators.
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Table 6.15 Regression Results for 1 mg/l threshold within Study Aquifers

Aquifer r2 Indicators Coefficient Partial F

Carrizo- 0.041 Constant (@  -0.053 -

Wilcox Thickness () -~ 0.249
Organic () -0.0060 6.97
Precip. () 8(7)(1)2
Fertilizers (1) '

Edwards  -- Constant (B) - -

(BF2) Thickness () - 0.154
Organic (3) - 8352
Precip. (13) B 0.250

Fertilizers (13)

Ogallala 0.0996 Constant@? 0.964 --
Thickness (B) - 0.039
J ) 0.027

Precip. ()
Fertilizers (1) 0.0201 10.39

Seymour -- Constant (p  -- --
Thickness (B) -- 0.259
Organic (13) 8%2;
Precip. (3) B 0:264

Fertilizers (13)
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6.4 GOMPARISON WITH WATER UTILITIES DIVISION DATA

The objective of this section is to determine how well the data collected by
the TWDB over a period of more than 30 years frogllsvconstructedor many
purposes pradts the likelhood of finding nitate in samples collected in a much
shorter period from ells usedfor pudic water sipply. Nitrate measurements
collected by the Water Utilities Division (WUD) of the Texas Naturaldiese
Conseration Commission as part of its Primary Drinking Water Standards
enforcement &ort are cdlected in a database maintained independently of the
TWDB Groundvater Data System. Reas of nitate measurements collected
between February 1993 and October 1994 wereaetetdfrom this database for
comparison to the quadrangle exceedegrobalilities estimatedrom the TWDB
database.

Of 16,538 measurements remded in the WUD dtabase, 11,698 were
collectedfrom water systems usimgroundvater exclusively, and could be traced to
well locations. 11,614 of theseneasurements could be identified with quadrangles
with at least one measurement included in the analysis of the TWDB data, and
6,992 could be identified with one of the 3,554 quadrangles with 12 or more
TWDB measurements (see Section 5.7?).

Because the number of measurements in the WUD database is relatively
small, only132 quads have 12 or momeasurement recds in both dtabases,
limiting the scope of quiby-quad comparison of egedence in the two databases.
Figure 6.36shows a scatter plot of this comparigonexceedences of the.1 mg/I

threshold.
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Figure 6.36 Quad-by-Quad Comparison of Estimated 0.1 mg/l Exceedence
Probabilities with WUD Nitrate Measurements

To form a comparison based at the WUD measurements, the data were
aggre@ted by the estimated exceedepeebabllity of the quadrangles in which
the water samples were collected. The results of this compdoistime 0.1 mg/I
threshold are shown igure 6.37 Figure 6.3a shows, for example, that all the
measurements in the WUD database colledtedh quads with an é@snated
0.1 mg/l exeedence probahlity between 0.9 and 1.0, about 89% had
concentrations above the threshold. The figlearly shows a trend toward higher
frequencies of nitrate detection in quads with higher estimated exceedence
proballities. The trend breaks down, however, in quadrangles with the lowest
estimated exceedengeobabhlities. Figure 6.37bmakes a similar comparison of
aggre@ted measurements, limited to quads where the exceedgwabablity
estimate is based on 12 or more measureniemtsthe TWDB dtabase. In this

comparison, the agement of estimated exceedepcebahlities and exceedences
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recorded in the WUD atabase iproves, but theasme break in the trend at low

probabilities can be seen.

a) quads with 1 or more TWDB measurements b) quads with 12 or more TWDB measurements
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Figure 6.37 Aggregated Comparison of Estimated 0.1 mg/l Exceedence
Probabilities with WUD Nitrate Measurements

Taken togetherFigures 6.3@and6.37 suggest that the TWDBatha under-
predict the WUD measurementisaat as often as they over-pretd In aggreate,
the two data sets agree but there is often a considerable difference in the detection
rates within a single quad. The same behavior can be seen in graphs of the same
informationfor higher threshold levels, which are presented on the following pages

in Figures 6.3&hrough6.43
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Figure 6.38 Quad-by-Quad Comparison of Estimated 1 mg/l Exceedence
Probabilities with WUD Nitrate Measurements

a) quads with 1 or more TWDB measurements b) quads with 12 or more TWDB measurements
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Figure 6.39 Aggregated Comparison of Estimated 1 mg/l Exceedence Probabilities
with WUD Nitrate Measurements
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Figure 6.40 Quad-by-Quad Comparison of Estimated 5 mg/l Exceedence
Probabilities with WUD Nitrate Measurements

a) quads with 1 or more TWDB measurements b) quads with 12 or more TWDB measurements
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Figure 6.41 Aggregated Comparison of Estimated 5 mg/l Exceedence Probabilities
with WUD Nitrate Measurements
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Figure 6.42 Quad-by-Quad Comparison of Estimated 10 mg/l Exceedence
Probabilities with WUD Nitrate Measurements

a) quads with 1 or more TWDB measurements b) quads with 12 or more TWDB measurements
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Figure 6.43 Aggregated Comparison of Estimated 10 mg/l Exceedence
Probabilities with WUD Nitrate Measurements

One possible interpretation of the higherrthpmedcted 0.1 mg/l
exceedence rates quads with low exceed@nokalilities is that there has been a

gradual buildup of niate ingroundvater systems, and that regions that in were in
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equilibrium at nitrate concentrations beld@il mg/l, are now loaded above that
level. If this were the case, however, one would expect to see this pattern repeated
at the higher exceedence thresholds, especially at the 1 mg/l level, where the
TWDB data shows an increase in the statewide detection rate over time.

The higher-than-prected 5 mg/l exceedence rates and lower-than-expected
10 mg/l exceedence rates in quads with high exceedaonballities may be due
in part to the influence of drinking water regulations. More frequent sampling is
required in systems where the 5 mg/l threshold is exceeded, and swatasswith
nitrate concentrations in excess to 10 mg/l violate the MCL and are likely to be
removed from \ater sipply sysems. These factors could lead to over-sampling of
water with nitrate bove 5 mg/l and under-sampling o&ter with nitrate below 10

mg/l. No attempt was made to compensate for either of these potential biases.
6.5 NTRATE AND HERBICIDES IN MIDWEST DATA SET

Although nitiate is the only constituent studied in thisrky the intial
objective was to devise a systdon predcting the likelhood of finding man-made
agricultural chemicals igroundvater. This sectiondalresses the question of how
the occurrence oflevated levels of nitrate relates to the presence of agricultural
chemicals. Because of the scarcity of herbicide filata Texas, the comparison is
made using datkom the herizide and nitrate raannaissance carried out in near-
surface aquifers of the mid-continental U.S. by Kolpduyrkart and Thurman
(1992).

The report lists results of emical analyses @99 water samples collected
from 303 wells in the mid-continental states of lllinoikdiana, lowa, Kansas,
Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota and

Wisconsin. Concentrations are listed for aietgr of nutrients, herbicides and
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herbicide metabolites. Of interest to thisrw are themeasurements of nitrate,
seven herbicides (aladr| atazine, cyanazine, metolaoh) metribuzin,prometon,

and simazine) and two dealkylated atrazine metabolites (deethylatrazine and
deisoproplatrazine). The detection limfor nitrate is0.05 mg/l. The dtection

limit for the herbicides and atrazine metabolites is 0.05 pg/Il.

In general, detectable levels of herbicides are more likely ttoloed in
water samples with elevated nitrate levels. ©Of0 samples with nitrate
concentrations above 3 mg/l, 84 (49%) hastedtable levels of at least one
herbicide or metabolite. In contrast,4#9 samples with niéite concentrations less
than or equal to 3 mg/l, 70 (16%) haetectable levels of at least one herbicide or
metabolite.

However, it is also true that of 246 samples with etedtable nitrate, 22
(9%) had étectable levels of at least one herbicide or metabolite. The absence of
nitrate in a well, apparently, oaot be considered a guatee that the well is also
free of herbicides—a less specifippoach to the use nitie as an indicator of
herbicides is called for.

Such an approach might be based on the idea thaathe ®nditions that
lead to a high incidence of elevated nitrate levels would also lead to a high
incidence of herbicide detections. A simple comparison of nitrate and herbicide
concentrations in samples grouped by two geologiamaters tends tooafirm
this idea.

Burkart and Kolpin (1993a), in their analysis of the midwesiadound
that nitrate and herbicide concentrations were higher in samples colfeated
unconsolidated aquifers than in samples colleétech bedrock aquifers. They

also found that niate and herbicide concentrations tend to decrease as aquifer
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depth increases. (Aquifer depth is defined as the vertical distance from the land surface
to the top of the aquifer material, regardless of whether the material is saturated or not.)

The matrix presented in Figure6.44 shows the number of water quality samples collected
from wells faling into each of four categories based on aguifer class (bedrock or
unconsolidated) and aquifer depth. The matrix also shows the number of nitrate measurements
in excess of two threshold values, and number of herbicide detections in samples from the four

categories. The rates of exceedence and rank of the four categories based on those rates are

summarized in Table 6.16 .

Bedrock

Tnconsolidated

Figure 6.44 Herbicide and Nitrate Measurements Grouped by Geologic Parameters

Depth £ 30 feet

Depth > 30 feet

Measurements: 113
Nitrate> 1 mg/l: 42
Nitrate > 3 mg/l: 30

Herb. Detections: 25

Measurements. 95
Nitrate > 1 mg/l: 13
Nitrate> 3 mg/l: 6

Herb. Detections: 11

Measurements. 335
Nitrate > 1 mg/l: 164
Nitrate > 3 mg/l: 120
Herb. Detections: 104

Measurements. 56
Nitrate > 1 mg/l: 26
Nitrate>3 mg/l: 14

Herb. Detections; 14
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Table 6.16 Aquifer Categories Ranked by Nitrate and Herbicide Detection Rates

Nitrate Conc. NitrateConc. Herbicide

>1mg/l >3 mg/l Detections
Aquifer Category rate rank rate rank rate rank
Deep 14% 4 6% 4 12% 4
Bedrock
Shallow 37% 3 26% 2 22% 3
Bedrock
Deep 46% 2 25% 3 25% 2
Unconsolidated
Shallow 49% 1 36% 1 31% 1
Unconsolidated

The results of this simple comparison are consistent with the hypothesis that conditions leading
to increased vulnerability to nitrate contamination, as evidenced by high rates of elevated nitrate
concentration, also lead to increased vulnerability to herbicides. This observation holds whether the
threshold for elevated nitrate is set at 1 mg/l, as in this study, or at 3 mg/l, as Madison and Brunett
(1985) suggest.

Although this comparison of nitrate and herbicide detections is far from conclusive, it suggests
that an analysis of the occurrence of a widely measured constituent like nitrate can be used to gain

insight into the occurrence of less commonly measured constituents like herbicides.

6.6 SUMMARY

The contents of this chapter have demonstrated how groundwater quality data can be
regionalized with a GIS and a database management system, how that regionalized data can be analyzed
statistically to classify those regions according to estimated probability of detecting excess nitrate, and
how other parameters associated with those regions can be compared with the regional exceedence
probabilities to form a predictive model. In addition, the regional exceedence probabilities were
compared with an independent data set to test their predictive accuracy, and a smple analysis showed a
possible connection between nitrate detections and vulnerability to herbicide contamination.

Sections 6.1 and 6.2 demonstrate the partitioning of the subsurface into two types of regions: the

two-dimensional grid of 7.5' quadrangles and the geologic
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regions of the five study aquifersWater quality measurements ageouped by
their association with these regions, and estimates opriblgalility that excess
concentrations of nitrate will bound in the regions arealculatedfrom those
groups ofmeasurements. Tharoballity estimates are then used to identify the
regions as more or less vulnerable to contamination by nitrate.

Section6.3 presented the results of an attempt to generalize the results of
the quadrangle exceedenpeobalilities by relating them to indicator variables
evaluated on the same quadrangles. The regression results showed significant
predictive potential onlyfor average annual @cipitation, which was inversely
related to theproballity of finding high nitrate concentrations, and with
association of water quality measurements with specific aquifers. The only
parameter associated with ausce of nitrate, nibgen fetilizer sales by ounty,
was found to have no sigigant value as an indicator of nitrate exceedence
probabilities.

In both Sections 6.Jand6.2, an effort was made to identify the degree to
which variations in depth and time, whichncat easily be represented in the two-
dimensional domain of a GIS, influence the likelbd of finding nitate at elevated
concentrations.

Section 6.4 compared independent water samples with the nitrate
exceedencerobabtlities presented irsection6.1. While quadrangles with higher
predicted exceedences did, imgeeate, have higher frequencies of nitrate
detecton, there was considerable idion in individual quadrangles between
predicted exceedenceroballities and frequencies of exceedence in the

independent data set.
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Section 6.5shows by a simple analysis of ddtam the mid-continental
U.S. that regions identified as vulnerable to nitrate contamination may also be

vulnerable to contamination by man-made herbicides.
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Chapter 7: Conclusions

This chapter summarizes the conclusions of thaskwand resates the
major results presented in the preceding chapters. The chapter is divided into
three sections: a summary of the vulnerability assessmehbdyet discussion
of the results the method's dipption to nitrate measurements in Texas, and

recommendations for the future use of the method and its results.
7.1 VWLNERABILITY ASSESSMENTMETHOD SUMMARY

The primary result of this work is the development of a gdher
applicable mdtod for assessing the vulnetiiély of groundwater sipplies, using
a geographic infanation system and a database of historic water quality
measurements. The rhetd is smnmarized by the six steps listed at the end of
Chapter 2 These steps are recapped here in the spéaific they were used in
this work, followed by comments on their application.
7.1.1 Method Summary
1. Select a constituent or set of constituemtsose presence indicates the
degree of vulnerability of a gundwater sourceThe selected constituent
for this study is nitrate.
2. Identify a set of distinct appable regions of the surface or subsurface.
Texas was divided into 7.5' quadrangles for mapping. Five aquifers were
selected as an alternative set of mapping units. In the quadrangles , all

measurements, regardless of well depth or aquifer asswgiatiere
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grouped together for analysis. In the aquifers omigasurements
associated with particular geologic formations were grouped.
Assemble a body of measurements of thetitoest identified in step 1
that can be linked with the regions identified in step itrate
measurement recds were retrieved from the Tex@gter Development
Board (TWDB) GroundNater Data Systenfior the years 1962-1993.
These measurements can be linked to quadrangles by the location of the
wells from which water samples were collectéar analysis. They can
also be linked to aquifers through the TWDB well description database.
Calculate descriptive statistics for tihe®dy of measurements linked with
each region. Exceedenceprobalilities for four nitrate concentration
thresholds (0.1, 1.0, 5.0, and 10.0 mg/l atér as nrogen) were
calculated. Two mébds were tried for @&snation: non-paametric
calculation of threshold exceedenpmbalilities for quadrangles based
on the model of water sampling as ariBmili process, and fitting of all
measurements in a quadrangle t@gnbmal probalility distribution. A
minimum of twelve measurements was requifed the exeedence
probability estimates to be included in maps.

Map the variation of the desctipe statistics from region to regn. The
estimated exceedengmobalility for each threshold were divided into
five ranges (<20%, 20-40%, 40-60%, 60—-80%, >80%) and quadrangles
with twelve or more measurements wereocaodedaccording to this

division.
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6. Relate the variation of the descriptive statistics to the variation of
indicator parameters by forming a mathematical expression that mimics
the relationship between the descriptive statistiosl indicator values
mapped over the same set of regiol®tepwise multiple regression was
used to form a linear expressioglating quadrangle-averaged estimates
of precipitaton, soil thickness, soil organic content, and nitrogen
fertilizer sales, to the exceedence probability estimates.

7.1.2 Comments

Selection of Constituents In this work, nitate was selected as the constituent to

act as awrogatefor vulneralility. It was chosen because a latgady of nitrate

measurements is available in Texas, making statistical descriptions of its
occurrence feasible, andedause nitrate is commonly associated with
agricultural sources, making it a potentiairregate for herbicides and other
agricultural chemicals. Nitrate has mamusces and is found in groundter
throughout Texas, which makes ititabble as an indicator o§roundvater
vulnerability, since its oagrence is nolimited to regions where human activity
generates concentratedusces. The drawbacks of nitrate as an indicator of
vulnerability include the fact that it often occurs naturally, making it difficult to
attribute high concentrations unamgbously to human influences. Anslar
study carried out using a cditgent or constituents with no naturabusces
might present a clearer picture of vulnerability to human influences.

Selection of Study Regions The selection of mappable regioesld result in

spatially compact regions with darm propeties. Since statistical descriptions
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of the measurements in the regions lump together all the measurdroenthe
regions, it is important the regions chosen can be adequately described by a few
numbers. In effect, mathematical meds used to form thetadistical
descriptions of the regions assume that the regions are homogeneous, and the
regions should be chosen in a way that does ntdteichat assumpin. Neither

the 7.5' quadrangles nor the aquifers used as study regions in this work fit these
requirements exactly. Some of the quadrangles contain wells (and thus
measurementsfrom several geologic famations, forming a heterogeneous
popuation poorly suted to statistical descrin. Smilarly, the aquifers are not
spatially compact, which reduces the homogeneity of plopuations of
measurements they contain. In spite of thdssrtsomings, clear trends in
vulnerability to nitrate aréound between regions mapped in both sets of study
regions. The division of the aquifers into quadrangles for the maps presented in
Section 6.2comes close to meeting the requirements of compactness and
homogeneity, but at a cost of reducing the number of measurements in each cell.
Selection of the @tabase. The primary requirementer the database used to

form datistical descriptions of the regions are that the data it containgdsbe

of reliable and uriorm quality and that the measurements hdfisiently
plentiful to support tatistical analysis. The TWDB database is certainly
plentiful, although there are reasons—describefaation 3.4-to suspect some
unevenness in the quality of the data it contains. The data in the Water Utilities
Division data set have been subject to mogerous and uniform @ity control

imposed by the provisions of the Safe Drinkivater Act, but are not yet
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plentiful enough to support a study of this type, except as a test attpyed

made from a larger data set.

Statistical Deription of Regions. The exceedencprobalilities calculated in

this work are amttempt to describe thprobalility that threshold values of
nitrate concentrations will be exceeded in thedgtregions. This approach to
statistical description was chosen over the more common measures of central
tendency and spread (like mean or median and standard deviation or inter-
guartile range) because it more directtideesses the nature of régtions based

on threshold concentrations such as detection limits and maximum contaminant
levels (MCLs). A region is more clearly at risk if its MCL exceedence
probability is high than if its average concentration is high.

Two statistical pproaches taalculating exceedengarobalilities were
considered. One approachtiesmted proballities of exceeding threshold
concentrations by counting the number of exceedences in the databasks rec
associated with the regions and treating this as the result afnauie process,
the other approach fits thathfrom 7.5' quadrangles to a lognumal distribution
function. The results of the study indte that there are few advantages to the
lognomal-fit method. As grapbal comparison of the two estimation rnhetls
(Figure 6.10shows, forcing data to fit a particular distributiof@in incorectly
evaluates the exceederm®balilities in regions where that distribution does not
fit well. A single distributionaform simply lacks the flexibility to capture the
range of variation in exceedenpmbalility over a large and hetegeneous area

like Texas. The computations required to fit tkgromal model are more
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complex than those for the Berdibprocessmethod, and the redtion of the
distribution to two parameter®ffers little advantage. The number of
measurements and exceedences of any threshold concentration in a region can be
found easily through the use of aatdbase management system and the
estimation of the exceedenpmbalility from those numbers is a simple process
of division. Also, meanngful confidence intervals can betiesated for the
Bernoulli-process method, and not for the lognormal-fit method.
Mapping Results. Mapping of the results of the statistical analysis makes spatial
patterns in detection of nitrate very evident. This adds considerably to the value
of the databastor understanding vations in water qualityhrough the fte.
Maps and statistiderm a compementary description of the database. Summary
statistics of exceedence patterns reduce a large quantity of data to a smaller,
more easily interpretable set of numbers. As with the maps, the ease of
interpretation comes at the expense of a loss of detail. The parallel between the
maps and statistics can be extendedher by analogy: Sumary statistics
reduce large amounts oath to a few meangful numbers, and maps reduce
large amounts of ata to a few meangful images. PRoper interpetation of
either maps or statistics requireswarderstanding of both the pligal processes
under study, and theathematical or cawgraphic processes that produce the
summary numbers and images.

Just as it is important to understand lingtations of statistical summary,
which tends to obscure heterogég in the data, it is likewise iportant to

understand themitations of the images presented in the maps. Because a set of
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discrete colors was usedor identifying the quadrangles’ exedence
probalilities, some differences are exaggerated and others minimized. Cells
with 39% and 41% eoeedenceprobabtlities have different colors, while cells
with 41% and 59% eceedenc@robalilities have the same aml. The maps best
serve to identify regions where consistently low or high pribibials arefound,
aiding in, but not replacing the interpretation of statistical analyses.

Statistical mdtods can be used to confirm and quantéationships

suggested by visual arination of maps. Some degree ofrelation between
precipitation and increased incidence of high nitrate concentrations is apparent
when maps of the two are compared. The regression analysis presented in
Chapter 6confirms this elationship, and allows it to be compared to other
potential indicators of nitrate contamination.
Forming a Mathematical Model. Stepwise multiple linear regression was used
to form an esmate of exceedengaobalilities for the 7.5 quadrangles based on
values of average annual precipitaii soil thickness, soil organic content, and
nitrogen fetilizer sales. The regressions showed little dependency on any of
these parameters except averagaual precipitatn. Although this was, in
some respects, the least successful aspect of tidig, shelack of wrrelation to
nitrogen fetilizer sales and sopropeties is an interesting result in itself. The
regression results are discussed furthéention 7.2.

Given the lack of significantarrelation to the selected indicators, it is

difficult to determinefrom the results of this work whether theethod of
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multiple linear regression is suitabfer forming a model of groundater
vulnerability.

Convenience of Databases and GlBecause a printed document like this one
is a static object, the advantages of easily accessiblsne data are not well
represented here. An example illustrates some of these advantages. In
Sectbn6.2.4 a single quadrangle in the Ogallala Aquifer withuamisally high

5 mg/l exceedencprobalility was described. The wells in the quad wrend

to be mostly shallow domestiaply wells, and the quad wdsund to be near
the town of Big Spring amid a number of small oil fields. A regulator
considering vulnerability waiverfor herbcide monitoring mightundertake a
similar examination of the regiomisounding a \ater sipply well or well field.
Once the quadrangle was identified by number (after somegmogjing éfort

has been invested, this can be accomplished with a mouse pdiotiek
operation) all the descriptive databaut wells and measurements in the
guadrangle were accessible in@eds. In contrast, the infmation dout nearby
towns and oil fields required examination of paper maps and consumoet a
twenty minutes time.

Now that the programs used in this study have bedtewrand tested,
they can be applied with little modification to any set of water quality
measurements. Modifying therograms to dsnate exceedencprobalilities
from theWater Utilities Division data set required only a few minuteskw The
process of acquiring that data set, mapping it into the existing quadrangles, and

counting measurements and exceedences was dhe off less than one day.
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Similarly, additional indicators can easily be ongorated into the analysis, if

they are available in the form of GIS coverages.
7.2 RESULTSIN TEXAS

The preceding section presented general conclusiomst ahemethods
developed for this study and their usefulness in describing the vulrgralb
groundwvater to contamination by nitrates, or by other constituents. This section
is concerned with the results of the application of thosehoadst to nitate in
Texas groundwater.

Interpreting Nitrate Results. Two assumptions are fuachental intepreting
nitrate exceedencproballities as an indication ofroundvater vulnerability.

The first of these is that the frequency of detection of elevated nitrate levels in
regions as reported in a database of historic measurements collestec
variety of wells is a useful indicator of the liketiod of etecting nitrate in
public water gpplies in the same regions at the present and in the future. The
second is that vulnerdity to nitrate contamination is related to vulnerability to
other contaminants.

The first assumption is confirmed by the ate measurements in the
Water Utilities Division database. A comparison of the exceedermdmblities
estimatedfrom the TWDB dta set 0f46,507 records with theneasurements
listed in the WUD data set df1,698 records shows that mite measurements
taken over a shortecent period (Haruary 1993 to October 1994) from public
water sipply wells onform to exeedenceprobablities estimated from

measurements collected over a muchger period (January 1962 to October
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1993) from a more diverse set oels. The orrespondence between the two
data sets is fdrom exact, but the recent measuremeindsn pubic supply wells
in the WUD database are much more likely to yield elevated nitrate levels if the
wells are located in quadrangles with high exceedenagalilities, as estimated
from the TWDB data set.

The second assumption, that atr exceedenceprobalilities are
indicative of an intrinsic vulnerability isonfirmed by two obsemtions. The
first is that the occurrence dflevated nitrate levels appears to be nearly
independent of the sources of nitrate examined in thidyst Nitrate in
groundvater is unorrelated with nitogen fetilizer sales, indicating that its
presence at elevated levels is due to other factors, such as the ease with which
contaminants can enter thgroundwater. The fact that the incidence of
groundwvater nitrate contamination is low in parts of east Texas wheregait
fertilizer sales exceedour tons per squarenile strongly suggests that the
groundwvater in that region is isolatfdom human influence to a muchegter
degree than in the Texas Panhandle, where fertilizer sales are lower and nitrate
detections are more frequent.

The second confination comeg$rom data collected in a rennaissance
of the Midwestern U.S. for néite and herbicides. A comparison of nitrate and
herbicide data shows that when water quality measurementgranped by
hydrogeologic déctors and these groupsmeasurements are ranked by the rates
of detection of nitrate and herbicides, the rankings are virtually identical.

Although reither of these observatiofierms conclusive evidence that nitrate
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levels are indicators of general vulnerability, they are both consistent with that
assumption.

Best Indicator. Of the four threshold conceations, the 1 mg/l exceedence
probalilities appear to be the best indicatogobundvater vulnerability. This is
the level most likely to show increases over time, a maoggestive inttator
than high concentrations alone. Maps of this exceederutmblity also show
more variability than the others, and geologic associations appear noosflyst
in the map of this threshold. Finally, nitrate detections at 1 mgkate well to
herbicide detections in the data from the Midwest reconnaissance study.
Statewide Patterns. The maps presented @hapter €clearly reveal large-scale
patterns in the oeccrence of nitate in Texagyroundwvater. Large, cohesive
regions within the State can be seen to have high exceegdestzagilities for
nitrate at thed.1, 1.0, 5.0, and 10.0 mg/lI concextton thresholds. This strongly
suggests that such regions can be identified eadsified by groundater
vulnerability for regulatory purposes.

In all of the maps, the influence of gegl on vater quality can be
plainly seen. The adjacent regions of the Balcones Fault Zone of the Edwards
Aquifer and the Carrizo-Wilcox Aquifer contrast sharply at the detection level
and the 1 mg/l concentration threshold. At the 5 and 10 mg/l concentration
thresholds, the Seymour Aquifer is visible among the few regions where
detection rates are high.

Indicators. Of the parameters examindéor use as ingators ofgroundvater

vulnerability, only averagermual precipitation was tied to substantial variations
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in exceedenc@robalilities, and this relationship wa®und to be oppate to
expectatbn. Of the soil pameters,organic matter content of the soil was
correlated to exceedenpeobalilities, but acounted for only amall part of the
observed variation in thogeobalilities. Soil thickness and madgen fefilizer
sales were found to have little value as indicators.

The weak link between soil parameters and exceedamobablities may
be due in part to the poor afal resolution of the STAFGO dta. The
STATSGO map units are large anetérogeneous regions, with no subdivisions
to indicate deviationfrom average soil pameter values. A map unit with an
average soil thickness of fifteen inchésr example, may cdain large areas
with virtually no soil at all. If a quadrangle falls in such an area, the map unit
average soil thickness may be a pooteatfon of the actual anditions in that
quad.

A similar agument can be made for thack of wrrelation between
nitrogen fetilizer sales andjroundvater nitrate. Fertilizer sales arggreated
by county, and apjation of those fertilizers may be very uneven within those
counties.

Average annual precipitation is subject to less local variagxhiliting
more gradual trends over the State. The size of the units used to map
precipitation is more@ropiate to the scale of its variati, which mayaccount
in part for its elatively high orrelation to exceedencprobalilities in the

guadrangles.
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Although there is a elationship between precipitation and nitrate
exceedencerobalility, it is beyond the capalbty of statistical studies like this
one to determine whether that relationship is causal. It is somewpatmg to
see that nitrate concentrations are higher where there is less rain. High recharge
rates, which are driven by precipiati, are assmated with increased
vulnerability in DRASTIC, for example.

There is a pronounced trend irepipitation in Texas: southeast is wet;
west is dry. Bcause of this trel, which also corresponds to importanti@aons
in geology, pecipitation may be acting as arsgate for location and aquifer
structure. This explanation is supported by thek of mrrelation between
precipitation and exceedence probabilitethin aquifers.

Aquifers as Indicators. Within the limited set of parameters tested in thelt
geology—as represented by asation of wells with the five example
aquifers—appears to dominate overface parameters such as gmibpeties,
precipitation and fertilizer sales as an indicatog@undvater quality. A model

of nitrate exceedengaroballity as good as any produced by the regressions in
this work could be consteted by calculating average exceedepoabalilities

for each geologiformation andgnoringall other factors.Table 7.1summarizes
the exceedencprobalility estimatefor the five aquifers and thet&8e. The

aquifers are listed in increasing order of 1 mg/l exceedence probability.
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Table 7.1 Exceedence Probability Summary

Threshold Exceedence Probability

Aquifer 0.1 mg/l 1 mg/l 5 mg/l 10 mg/I
Carrizo-Wilcox 24% 7% 2% 1%
Hueco-Mesilla Bolson 79% 46% 3% 0.9%
Ogallala 94% 73% 12% 5%
Edwards (BFZ2) 94% 74% 0.8% 0.2%
Seymour 96% 94% 82% 57%
Statewide 64% 44% 16% 9%

The Carrizo-Wilcox aquifer is the least likely of the fivadst aquifers to
produce vater with elevated nitrate levels, and the SeymAquifer is the most
likely. Low exceedencproballities werefound atall thresholds in the Carrizo-
Wilcox, and high exeedenceprobabhlities were found atall thresholds in the
Seymour.

More complex behaviors were seen in the Hueco-MesilladBplthe
Ogallala, and the Balcones Fault Zone of the Edwards. In these three aquifers,
the exceedencproballities were high at the detection level and the 1 mg/I
threshold and low at the 5 and 10 mg/I threshold. A plausible explanation of this
behavior can be found in the pegable structures of these aquifers (the Ogallala
and Hueco-Mesilla Bolson are largely fluviatile, and the Edwards is karst). The
aquifers may be vertically penetrable, increasing the vulnerability to nitrate (and
other contaminants), and acmting for the high eceedencerobablities at low
concentrations. At the same time, rapmtizontal motion of waterhtough the
aquifers could disperse the contaminants, preventing concentraftioms

reaching the higher thresholds. These aquifers also show little variation in
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concentration with depth, again suggesting that tdoesits are well mixed and
dispersed.
Variations with Depth and Time. The Texas Water Development Board's
descriptions include the depth of all wells, but screened interval depths are
availablefor only a snall number of wells, and were not used in thiglgt A
shallow well can draw water onfyom near the sugice, but a deep well may
collectgroundvater abng its whole depth, soel depth is a flawed indicator of
water quality variations in the vertical dimemsi It is true, however, that for the
State as a whole, shallower wells are more likely to exhibit high nitrate
concentrations (seleigure 6.1). As stated laove, however, this trend is gabt
to variation within individual aquifers.

Similarly, while there has been an increase in the hkeld of finding
nitrate in excess of 1 mg/l over time across the state, this trend daonokin
only the Ogallala awng the five aquifers studied here. An increase in the
presence of any chemical over time is eorsg indcator of vulnerability to

contamination.
7.3 RECOMMENDATIONS

Recommendations resulting from this studsll finto three broad
catgyories: recommendations for use of theethod, recommendations for
further study, and recomendations for the use of vulnellgly assessments in
the regulation of groundwater.

Using the Vulnerability Assessment Method. The six steps in the method are

repeated one last time, with recommendations for their application.
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Select a constituent or set of constituemtsose presence indicates the
degree of vulnerability of a gundwater source. If the goal of the
assessment is to predict the presence of a particular constituent,
measurements of the constituent itsalfdd be used, if possible. If such
measurements are unavailable, another closelyelated constituent
should be selected.

If the goal is to assess a more general vulnerability to contamination by
human activities, the ideal constituent would be one which has been
widely measured and has no naturalrses. Nitrate, because of its many
sources, is not an ideal constitudot study, although it has been very
widely measured. The audr was unable to find a gitly anthropogenic
constituent with aficient reord of measurements. One possible way
around this prdlem would be to combine measurements ajraup of
anthropogenic cotisuents, as wadone in this report in the amination

of the midwest data.

Identify a set of distinct appable regions of the surface or subsurface.
Ideally, the regionsheuld be both homogeneous and highly papad.
Because the effects of diminishimqgppuation size on onfidence in
estimated exceedenpeobalilities can be described mathematically, and
the effects of hetegereity cannot, it is ketter to sacrifice numbers for

consistency.
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If the data are udficiently dense, measurementsosld be grouped into
geologically homogeneous regions first, then stratified by depth or
mapped by location in two dimensions.

Assemble a body of measurements of thetitoest identified in step 1
that can be linked with the regions identified in stepThe availability
of data will dictate most of thewsly design. Although this is the third
step in the method, knowledge of thedable data is essential foee the
design of the study (steps 1 and 2) can be carried out.

Calculate descriptive statistics for tihe®dy of measurements linked with
each region. Exceedencerobalilities for threshold concerdtions are,
in the author's view, the best alable quantitative measure of
goundvater vulnerability. Exceedencerobalility estimates and
confidence intervals can lmalculated easilyjrom databases, and can be
compared through standard statistical methods to indicator parameters.
As Figures 6.33and6.34 indicate, it is unlikely that a singlerobalility
distribution form can be used to describe the patjan of constituent
concentrations in a body of grounater. For this reason, tesates of
exceedencerobalilities should becalculatedfor disciete concentration
thresholds using the binomial (Bernoulli process) method.

Map the variation of the desctipe statistics from region to region.
Maps are an important and powerfahethod for communating
information dout quatities that vary spatially. The mapsoduced in

this study have provoked much more discussion and thought than tables
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of results ever would have. Although it would be possible to carry out the
other five steps in this method withoutating maps, this stepauld not

be omitted.

Some improements could be made in the maps presented here, however.
The division of exceedengeobalilities into ranges 00—-20%, 20—40%,
etc. is essentially arbitra It is probably oflittle concern to a regulator

to distinguish between a 70% and a 90% prdlbgbof exceeding a
maximum contaminant level. A scale thatovides more resolution
where exceedengmobalilities are low and less resolution where they are
high would be a better aid to regulatory decision-making.

Relate the variation of the descriptive statistics to the variation of
indicator parameters by forming a mathematical expression that mimics
the relationship between the descriptive statistiogl indicator values
mapped over the same set of regiofifie use of multiple regression to
evaluate the arrelation of indicators to exceedenpeobabtlities was
inadequately tested in thisusly kecause of the lack ofocrelation
between the chosen indicators and the presence of nitrgteundvater.
Some recommendations about pdinndicators are imrder to provide
better tests of the linear regression Imel, and produce moraeanngful
predictions of groundwater quality.

More emphasis should bdaped onsourcesof the constituent. Only
nitrate fertilizer use was considered in thigdst, and with poor stial

resolution. Future studies of rate $iould consider sources from sewage,
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from livestock prodation, and from natural sources—hanal, vegetable,

and mineral. The spatial resolution of the data and the directness with
which it reflects the awmunt of nitate actually available as a
contamination aurce should be improved. The county-averaged nitrogen
fertilizer sales used in thisugty are both sgtially unfocused and caalty
indirect.

The STATSGO dtabase contains valus many more soil pameters

than were tested in this study. These should be inetstfurther. Soil
permeability,for example, might be a more valuableigador than soil
thickness or organic content, which were examined here.

Because the results of thisidy indcate a siong dependence on geology,
more detailed data on such parameters as aqufefuctivity, porosity,

and depth should be used. edduse such quantities vary in three
dimensions, someffert will be required either toxpress these in the
two-dimensional domain of ggraphic infomation systems, or to expand
GIS to deal with three-dimensional data.

Finally, the inverse relationship between high nitrate exceedence
probalilities and rainfall is very intriguig. It is possible, for example,
that in east Texas, where rainfall rates are higher than in the west, more
nitrate is carried away inugace runoff and removed from the
groundwater system. It may be that rainfall or recharge rates are less
valuable indicators ofjroundvater quality than the relative weights of

runoff and recharge. Some effort should beectied toward developing
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an index that properly expresses thekationship. The ratio of recharge

to runoff might be a good place to start.

Future Work. The original goal of this study was to forlate a mdtod for
identifying groundvater surces sufficientlyprotectedfrom cortamination that
they could be granted waivers from monitoring for man-made agricultural
chemicals. This goal has not been fully met, fmogress has been made toward
it. In further pursuit of that goal, several steps should be taken.

The method developed in this study should bdiagpo measurements of
herbicides and other man-made contaminants. Because nitrateprodoet of
both natural and anthropogenic processes, ¢ection of elevated nitrate levels
is somewhat ambiguous as anigador of vulnerability to human activities. If a
groundvater sipply shows dtectable levels of atrazinfgr example, there can
be little question that it is vulnerable to human activities.

The 7.5' quadrangles used in this study were in part amdrtif the
Texas Water Development Board's wealimbering syiem. Although they
produce a convenient grid for exploring Texas grouradew alternative study
regions should be amined. Divisions ofgroundvater following more
physcally-based boundaries, like the five aquifers studied here should be
considered. Since the ultimate goal of studies like this one is to identify regions
of high and low vulnerability, it isgpropiiate toform study regions on the basis
of divisions in factors that influence vulnerability.

If studies of this type are to produce vialteethods for vulnerality

assessment, the most urgent need is for more letenmdicator data sets. At
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present, data tends to be either detailed, or widespread, but not both. The Soil
Conseration Service isproducing a set of soil ala more detailed than
STATSGO, but its coverage ifilsonly a fraction of the ountry. As this data
becomes available, it is possible that closerreaspondence between soil
parameters and water quality could be found.

Because geoby appears to be the dominant influence aewquality,
GIS coverages of geological parametensutd be developed as part of any
serious effort at GIS-based vulneitdapp assessment.  Therodems of
representing the three-dimensional variations of the earth's structure in the two-
dimensional domain of GIS are substantial. One possfipeoach would be to
mimic the STATSGO data structure, identifyindgporizontal regions of uform
geological propeties in a poygon coverage, and representing theirticar
variations in tables linked to the coverage. In any case, geological databases are
a necessity if GIS is to play a significant role gnoundvater vulnerability
assessment.
Regulatory Suggestions.The vulnerability assessmerits granting waivers for
monitoring of agricultural chemicals ipublic groundvater sipplies require
evaluation of individual wells. Aftough this study has focused on regional
variations in nitrate concentrations, some recommendations arepgtitipgate.
If a well is to be classified gsrotectedfrom cortaminatbn, it is recessary to
show that the well has adequat®tectionfrom backwash down theell bore.

Aurelius (1989) identified wll construction and pesticide mix@load
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operations close to wellheads agortant contributors to contamination where
pesticides were found in Texas wells.

After well constructon, the most importanéelement in assessing the
vulnerability of a well to contamination is identification of the aquifers or
formationsfrom which it draws wter. The EPA's Groundwer Task-Force
makes the same recommendation (USERB91), listing identitation of
aquifers supplying ells as a high priorityfor sate agencies dealing with
groundvater quality. If a well igoorly constrated or drawdrom an aquifer
that has a high incidence of contamipatithen other environmtal factors such
as soil parameters will have very little influence on the well's vulnerability.

The results of this work may have moreedir bearing omprograms like
the EPA's Differential Protectionrégram, which would restt the use of
certain agricultural chemicals in sensitive areas, rather than banning their use
everywhere. The maps i€hapter 6 clearly show that vulnerability to
contamination by nitrate varideom region to region. Ifimilar results can be
shown for man-made ctaminants such as herbicides, then there is a difference
in the risks associated with using such chemicals in different regions, and a basis
for regiorally differing restrictions. Spatial and statistical analysis of existing
groundwater contamination can help identify vulnerable regidos such

regulatory purposes.
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Appendix A: Database Definitions

WELL DATA
TWDB_WELLS.DAT
INCLUDE.WELLS
AQ5.WELLS

NITRATE MEASUREMENT DATA
TWDB_WELLS.NIT
INCLUDE.NIT

PRECIPITATION DATA
PREC.DAT
STATION.MEAN

FERTILIZER SALES DATA
NITRATE.USE

SOIL PARAMETER DATA
STUDY.MAPU
STUDY.COMP
STUDY.LAYER

QUADRANGLE AQUIFER ASSOCIATIONS
AQ QUAD.DAT

DISCRETE PROBABILITIES RESULTS
COUNTS.QUAD
COUNTS.QUAD (extended for WUD data)
BINO.QUAD

LOGNORMAL PROBABILITIES RESULTS
LOGFIT.QUAD

QUAD PARAMETERS FOR REGRESSION
PARAMS.QUAD

WUD NITRATE AND WELL DATA
NIT.WRK
POE.WRK
PWS-QUAD.PAT

MIDWEST NITRATE AND HERBICIDE DATA
CONSTRUCTION
QUALITY
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WELL DATA

TWDB_WELLS.DAT

COLUMN ITEM NAME
1 WELLNO
8 AQFCODE 8
16 FIPSCODE 3
19 LATITUDE 7
26 LONGITUDE 7
33 LOCMETHD 1
34 DEPTH 6
40 DEPMETH 1
41 ALTITUDE
46 ALTMETH
47 DRILLDATE

5
1
8
55 PRIMEUSE 1

** REDEFINED ITEMS **

1 QUAD_2.5M 5
1 QUAD_7.5M 4
1 QUAD_1D 2

INCLUDE.WELLS

COLUMN ITEM NAME
1 WELLNO 7
8 AQFCODE 8
16 FIPSCODE 3
19 LATITUDE 7
26 LONGITUDE 7
33 LOCMETHD 1
34 DEPTH 6
40 DEPMETH
41 ALTITUDE
46 ALTMETH
47 DRILLDATE
55 PRIMEUSE
56 QUAD_OK
57 QUAD_ERR

= a1
Nl ol o) =

58 MEAS 1 1

59 INCLUDE

** REDEFINED ITEMS *x

1 QUAD_2.5M 5
1 QUAD_7.5M 4
1 QUAD_1D 2

NS

WIDTH OUTPUT TYPE N.DEC

WIDTH OUTPUT TYPE N.DEC
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AQ5.WELLS
COLUMN ITEMNAME  WIDTH OUTPUT TYPE N.DEC
1 WELLNO 7 7 1 -
8 AQF 4 4 C -
12 AQFCODE 8 8 C -
20 FIPSCODE 3 3 | -
23 LATITUDE 7 7
30 LONGITUDE 7 7 1 -
37 LOCMETHD 1 1 1 -
38 DEPTH 6 6 | -
44 DEPMETH 1 1
45 ALTITUDE 5 5
50 ALTMETH 1 1
51 DRILLDATE 8 8
59 PRIMEUSE 1 1
60 QUAD_OK 1 1
61 QUAD_ERR 1 1
62 MEAS 1 1 C -
63 INCLUDE 1 1 C -
** REDEFINED ITEMS *
1 QUAD_2.5M 5 5
1 QUAD_7.5M 4 4 1 -

1 QUAD_1D 2 2 I -
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NITRATE MEASUREMENT DATA

TWDB_WELLS.NIT
COLUMN ITEM NAME WIDTH OUTPUT TYPE N.DEC

1 WELLNO 7 7 1 -

8 MM_DATE 2 2 B -
10 DD_DATE 2 2 B -
12 YY_DATE 2 4 B

14 RELIABILITY_REM 2 2 C -
16 COLLECT_AGENCY 2 2

18 Q71850_FLAG 1 1 C -
19 Q71850_NITRATE 8 9 F 2
** REDEFINED ITEMS **

1 QUAD_2.5M 5 5 | -

1 QUAD_7.5M 4 4 1 -

1 QUAD_1D 2 2 1 -
INCLUDE.NIT

COLUMN ITEM NAME WIDTH OUTPUT TYPE N.DEC
1 WELLNO 7 7 1 -

8 MM_DATE 2 2 B -
10 DD_DATE 2 2 B -
12 YY_DATE 2 4 B

14 RELIABILITY_REM 2 2 C -

16 COLLECT_AGENCY 2 2 C -
18 Q71850 FLAG 1 1 C -

19 Q71850 _NITRATE 8 9 F 2
27 INCLUDE 1 1 C -

28 NIT_ADJ 8 9 F 2

* REDEFINED ITEMS **

1 QUAD_2.5M 5 5 | -

1 QUAD_7.5M 4 4 1 -

1 QUAD_1D 2 2 1 -
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PRECIPITATION DATA

PREC.DAT

COLUMN ITEM NAME WIDTH OUTPUT TYPE N.DEC
1 STATION_ID 5 6 I -
6 STATION_NAME 23 23 C -

29 YEAR 4 4 1 -
33 PREC 8 6 F 2
** REDEFINED ITEMS **

1 UNIQUE 28 28 C -

STATION.MEAN

COLUMN ITEM NAME WIDTH OUTPUT TYPE N.DEC
1 STATION_ID 5 &6 I -
6 STATION_NAME 23 23 C -

29 STATE 2 2 1 -
31 CNT_40 4 5 B -
35 GAP_90 2 2 1 -
37 TOT 40 8 8 F 2
45 MEAN_40 8 18 F 6
53 DELTA-30-40 8 18 F 6
61 CNT_30 4 5 B -
65 GAP_80 2 2 1 -
67 TOT 30 8 8 F 2
75 MEAN_30 8 8 F 2
* REDEFINED ITEMS **

1 UNIQUE 28 28 C -
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FERTILIZER SALES DATA

NITRATE.USE
COLUMN ITEM NAME WIDTH OUTPUT TYPE N.DEC
1 FIPSCNTY 3 3 I -

4 NTOT86 8 18 F 6
12 NTOT86.USE 4 12 F 3
16 NTOT87 8 18 F ©6
24 NTOT87.USE 4 12 F 3
28 NTOT88 8 18 F 6
36 NTOT88.USE 4 12 F 3
40 NTOT89 8 18 F 6
48 NTOT89.USE 4 12 F 3
52 NTOT90 8 18 F ©6
60 NTOT90.USE 4 12 F 3
64 NTOTO91 8 18 F 6
72 NTOT91.USE 4 12 F 3
76 NTOT86-91 8 18 F 6

84 NTOT86-91.USE 8 18 F 6
92 NUSES86-91.RNK 3 3 1 -
95 NTOT86-91.AVUSE 8 18 F 6
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SOIL PARAMETER DATA

STUDY.MAPU
COLUMN ITEM NAME WIDTH OUTPUT TYPE N.DEC
1 STSSAID 5 5 C -
6 SSAID 3 3 C -
9 MUSYM 5 5 C -
14 MUID 7 7 C -
21 MUNAME 109 109 C -
130 MUKIND 1 1 C -
131 MLRA 4 4 C -
135 PRIMFML 2 2 C -
137 MUAREA 8§ 18 F 2
145 MUACRES 6
151 SUM 2 3
153 AVTHK 8 6
161 AV-MAX-ORG 8
8
8

6
B -

169 AV-MID-ORG 8

177 AV-MIN-ORG 8 F 2

STUDY.COMP

COLUMN ITEMNAME  WIDTH OUTPUT TYPE N.DEC
1 STSSAID 5 5 C -
6 MUID 7 7 C -
13 SEQNUM 2 2
15 SOILTHK 8 18
23 MAX-ORG 8
31 MID-ORG 8
39 MIN-ORG 8
* REDEFINED ITEMS
6 MAPSEQ 9

STUDY.LAYER
COLUMN ITEM NAME  WIDTH OUTPUT TYPE N.DEC
1 STSSAID 5 5 C -

6 MUID 7 7 C -

13 SEQNUM 2 2 1 -

15 S5ID 6 6 C -

21 LAYERNUM 1 1 1 -

22 LAYERID 2 2
24 LAYDEPL 2 2 1 -
26 LAYDEPH 2 2

28 BDL
32 BDM
37 BDH
41 OML
45 OMM
50 OMH
* REDEFINED ITE
6 MAPSEQ

NN R

4
5

4

4
5
4

E NS

S**
9 9 C -
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QUADRANGLE AQUIFER ASSOCIATIONS

AQ_QUAD.DAT

COLUMN ITEMNAME  WIDTH OUTPUT TYPE N.DEC
1 QUAD_7.5M 4 4 1 -
5 EBFZ 1 1 -
6 CZWX 1
7 OGLL 1
8 SYMR 1
9 HMBL 1 -

10 AQ_CNT 1 1 1
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DISCRETE PROBABILITIES RESULTS

COUNTS.QUAD
COLUMN ITEM NAME  WIDTH OUTPUT TYPE N.DEC
1 QUAD_7.5M 4 4
5 WELL_CNT 2 4

7 MEAS_CNT 2 4
9 DTCT_CNT 2 4
2 4

2 4

2 4

| -

B -
B -
B -

11 GT1_CNT B -

13 GT5_CNT B

15 GT10_CNT B

17 DTCT_PROB 8 8 F 6

25 GT1_PROB 8 8 F 6

33 GT5_PROB 8 8 F 6

41 GT10_PROB 8 8 F 6

COUNTS.QUAD (extended for WUD data)

COLUMN ITEM NAME WIDTH OUTPUT TYPE N.DEC
1 QUAD_7.5M
5 WELL_CNT
7 MEAS_CNT
9 DTCT_CNT
11 GT1_CNT
13 GT5_CNT
15 GT10_CNT
17 DTCT_PROB
25 GT1_PROB
33 GT5_PROB
41 GT10_PROB
49 WUD_MEAS
51 WUD_GT1
53 WUD_GT5
55 WUD_GT10
57 WUD_DTCT
59 WDT_PROB
67 W1_PROB
75 W5_PROB
83 W10_PROB

L OO g

)]
»

NN
o NN N NN A
(o) o NN chomm
»

APAprAn
mmmmhhhhbmmmmh I

WOWmmw—
ﬂﬂﬂﬂwwmmwﬂﬂﬂﬂm @

»
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BINO.QUAD
COLUMN ITEMNAME  WIDTH OUTPUT TYPE N.DEC
1 QUAD_7.5M 4
5 WELL_CNT 2

7 MEAS_CNT 2
9 DTCT_CNT 2
11 GT1_CNT 2
2

2

8

8

13 GT5_CNT
15 GT10_CNT
17 DTCT_PROB
25 DTCT_LO
33 DTCT_UP
41 GT1_PROB 8
49 GT1_LO

57 GT1_UP

65 GT5_PROB
73 GT5_LO

81 GT5_UP

89 GT10_PROB
97 GT10 _LO
105 GT10_UP

Tn
»

(o]
(o)X -b'h'b‘b-b-b-b

o) o0 0o 00
[0} ® foe)
o0 oo
o © ©
@ m m @
M M
I R ,
N o o m-b-b
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LOGNORMAL PROBABILITIES RESULTS

LOGFIT.QUAD
COLUMN ITEMNAME  WIDTH OUTPUT TYPE N.DEC
1 QUAD_7.5M 4 -
5 MEAS_CNT 2
7 MED_NIT 8
15 MEANLOG 8
23 STDLOG 8 7 F 3
31 R2 8 7
39 T_STAT 8
47 F_STAT 8
55 STDERR 8 7
63 P_FSTAT 8 8 F 6
71 MP_DTCT 8 4
79 MP_1 8 4
87 MP_5 8 4 F 2
95 MP_10 8 4

~N o
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QUAD PARAMETERS FOR REGRESSION

PARAMS.QUAD
COLUMN ITEM NAME WIDTH OUTPUT TYPE N.DEC

1 QUAD_7.5M 4 4 1 -

5 SOILAREA 8 18 F 5
13 THKAR 8 18 F 5
21 OMMAR 8 18 F 5
29 AVSOILTHK 8 6 F 2
37 AVSOILOMM 8 10 F 4
45 PRECAREA 8 18 F 5
53 PRCAR 8 18 F 5
61 AVPREC 8 5 F 2
69 AVNIT86-91.USE 8 18 F 6
77 CTYAR 8 8 F 2

85 NITAR 8 8 F 2
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WUD Nitrate And Well Data

NIT.WRK
COLUMN ITEM NAME WIDTH OUTPUT TYPE N.DEC

1 PREFIX 3 3 C -

4 LAB 5 5 |

9 DATECOLL 8 10
17 TIMECOLL 8

25 SYS-ID 7 7 C -

32 POE 3 3 C -

35 SYS_NAME 34 34 C -
69 SYS_ADDR1 34 34 C -
103 SYS_ADDR2 34 34 C -
137 SYS_CITY 25 25 C -
162 SYS_ZIP 9 9 C -
171 TESTNO3 1 1 C -
172 TESTNO2 1 1 C -
173 TESTNO3NO2 1
174 NO3RESULTS 8
182 NO2RESULTS 8
190 NO3NOZ2RES 8
198 LABCOMMENT 4
238 SAMPLETYPE 1
239 COMMENT 20 20
259 LOCATION 34 34 C -
293 ENTRYCODE1 3 3
296 ENTRYCODE2 3 3
299 ENTRYCODES 3 3
302 ENTRYCODE4 3 3
305 ENTRYCODES 3 3
308 SOURCE 34 34 C -
342 OTHER 34 34 C -
376 STATCODE 2 2 1 -
378 PRESERVED 1 1 1 -
379 DATEIN 8 10 D -
389 QUAD_7.5M 4 4
393 NOSFL 1 1
394 NO3 4 6 F
497 NOZ2FL 1 1
498 NO2 4 6
402 NNFL 1 1
404 NO3NO2 4 6 F 2

** REDEFINED ITEMS **

25 SYSENT 10 10 C -
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POE.WRK
COLUMN ITEM NAME WIDTH OUTPUT TYPE N.DEC

1 PWS-ID 7 7 C -
8 POE 3 3 C -

11 WATERSOURCE 10 10 C -
21 QUAD_7.5M 4 4 1 -

** REDEFINED ITEMS **

1 SYSENT 10 10 C -

PWS-QUAD.PAT
COLUMN ITEM NAME WIDTH OUTPUT TYPE N.DEC
1 AREA 8 18 F 5
9 PERIMETER 8 18 F 5
17 PWS-QUAD#
21 PWS-QUAD-ID
25 PWS#
29 PWS-ID
33 PWSID
40 POE 3 3 C -
43 WATERSOURCE 10 10 C -
53 OWNERSDES 15 15 C -
68 STATEWELL 7 7 C -
75 LATITUDE 6 6 C -
81 LONGITUDE 7 7 C -
88 LOCACC 1 1 C -
89 LOCAGEN 1 1 C -
90 LOCMETH 10 10 C -
100 DATUM 2 2 C -
102 SPATREF 1 1 C -
103 FIPS 3 3 C -
106 QUADS 8 8 C -
114 WELLSTAT 1 1 C -
115 DEPTHAGEN 1 1 C -
116 DEPTHSOURC 1 1
117 AQUIFER 8§ 8 C -
125 AQUIAGEN 1 1
126 AQUIFMETH 1 1
127 AQUITYPE 1 1
1
1

B -
B -

4
4
5
5
7

~N s B
Omwmm

128 AQUIPORO

129 REMARKS

130 INITIALS 3
*133 QUADS_7.5#
* 137 QUADS_7.5-ID
*141 QUAD_7.5M

* REDEFINED ITEMS **

33 SYSENT 10 10 C -

'_\
'b-h'bw =

*—item added by overlying with coverage quads_7.5
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MIDWEST NITRATE AND HERBICIDE DATA

CONSTRUCTION
COLUMN ITEMNAME  WIDTH OUTPUT TYPE N.DEC
1 SITE_ID 5 5 C -
6 LATITUDE 4 8
10 LONGITUDE 4 8
14 CONST_YEAR 4
18 WELL_DEPTH 2
20 OPEN_INT_TOP_DPH
22 OPEN_INT_BOT_DPH
24 PRIMARY_USE 1
25 AQ_CLASS 1 1 C -
26 AQ_TYPE 1 1 C
27 AQ_MATERIAL 8 8 C -
35 DPTH_AQ_TOP 2 4 B

QUALITY

COLUMN ITEMNAME  WIDTH OUTPUT TYPE N.DEC
1 SITE_ID 5 5 C -
6 DUP_FLAG 1 1 C -
7 SAMPLE_DATE 8 10 D -
15 WATER LEV_FLAG 1 1 C -
16 WATER_LEVEL 2 4 B -
18 SPEC_COND B -
20 PH 4 5 1
24 DISS_O 4
28 NITRITE_FLAG
29 NITRITE 4
33 NITRITE+ATE FLAG 1 1 C -
34 NITRITE+NITRATE 4 6 F 2

6 F

2 4
F

5 F 1

1 1 C -

6 F 2

38 NITRATE 4 2
42 AMMONIUM_FLAG 1 1 C -
43 AMMONIUM 4 6 F 2

47 PHOSPHORUS FLAG 1 1 C -
48 PHOSPHORUS ORTHO 4 6

52 ALACHLOR_FLAG 1 1 C -
53 ALACHLOR 4 6 F

57 ATRAZINE_FLAG 1 1

58 ATRAZINE 4 6 F

62 CYANAZINE_FLAG 1 1

63 CYANAZINE 4 6 F
67 D_E_ATRZN_FLAG 1 1
68 DEETHYLATRAZINE 4 6
72 D_IPL_ATRZN_FLAG 1 1
73 DEISOPROPYLATRZN 4 F
77 METOLACHLOR FLAG 1 1 C -
78 METOLACHLOR 4 6

82 METRIBUZIN_FLAG
83 METRIBUZIN 4
87 PROMETON_FLAG
88 PROMETON 4
92 SIMAZINE_FLAG 1 1 C -
93 SIMAZINE 4 6 F 2

1 1
6 F
1 1
6 F
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Appendix B: Computer Programs

This appendix contains the comput@rograms, some \iten in
Arc/Info’s macro languageafnl), and others in C, FORTRAN, or AWK, that
organze the data used in theudly andcalculate the neorted statistics. The
following list groups the programaccording to their fuction and gives their
names. The actual code follows, in the order listed.

WELL AND MEASUREMENT RECORD SELECTION
test_quad.aml
test_quad.c
include.aml

PRECIPITATION CALCULATIONS
years.aml
firstyear
lastyear
gap
precmean.aml

SOIL PARAMETER CALCULATIONS
org_int.aml
unit_avg.aml

QUADRANGLE GENERATION
build_quads7.aml
tx_7m.c

DISCRETE PROBABILITY CALCULATIONS
count_quad.aml
count_aqg.aml
count_agquad.ami
count_wud.aml|
bino2.f
bino_quad.aml
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LOGNORMAL PARAMETER CALCULATIONS
logfit.c
fit_quad.aml

MAP CREATION
gtl plot.aml

QUADRANGLE PARAMETER AVERAGES
aw_avg.aml
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[* testquad.aml -- determines whether the number of a well listed
/* in the TWDB database is consistent with the well's location
[* data.

tables

/* define an info table to hold the results of the test
define gtest.tab

wellno7 7

quad ok1l1lc

quad errllc

[* create a text file with the necessary data for the test
select twdb_wells.dat
unload gtest.in wellno latitude longitude

/* execute the C program the performs the test
SYSTEM test_quad qgtest.in gtest.out

/* transfer the results to the new info table
select gtest.tab
add from gtest.out
g stop

[* Expand the well data table with the results of the test.
JOINITEM twdb_wells.dat gtest.tab twdb_wells.dat wellno primeuse

[* delete the text files and the temporary info table
&sv delstat := [DELETE -FILE qgtest.in]

&sv delstat := [DELETE -FILE gtest.out]

&sv delstat := [DELETE -INFO gtest.tab]

&return
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/* test_quad.c -- tests whether a location, given by latitude and
* longitude, is consistent with the TWDB number assigned to a
* well */

[* USAGE: test_quad infile outfile */
#include <stdio.h>

/* define an array holding numbers and coordinates for the SE
* corners of the 89 1-degree quads enclosing Texas, numbered
* in accordance with TWDB wells */

int secor[89][3] = { {1, 103, 36},{2, 102, 36},{3, 101, 36},
{4, 100, 36},{5, 100, 35},{6, 101, 35},{7, 102, 35},

{8, 103, 35},{9, 103, 34}.{10, 102, 34},{11, 101, 34},
{12, 100, 34} {13, 99, 34},{14, 98, 34}.{15, 97, 34},

{16, 94, 33},{17, 95, 33},{18, 96, 33},{19, 97, 33},

{20, 98, 33},{21, 99, 33}.{22, 100, 33},{23, 101, 33},
{24, 102, 33}{25, 103, 33},{26, 103, 32},{27, 102, 32},
{28, 101, 32}.{29, 100, 32}.{30, 99, 32},{31, 98, 32},
{32, 97, 32}.,{33, 96, 32},{34, 95, 32},{35, 94, 32},

{36, 93, 31},{37, 94, 31},{38, 95, 31},{39, 96, 31},{40, 97, 31},
{41, 98, 31}.{42, 99, 31},{43, 100, 31},{44, 101, 31},
{45, 102, 31},{46, 103, 31},{47, 104, 31},{48, 105, 31},
{49, 106, 31},{50, 105, 30},{51, 104, 30},{52, 103, 30},
{53, 102, 30}.{54, 101, 30}.{55, 100, 30}.{56, 99, 30},
{57, 98, 30},{58, 97, 30},{59, 96, 30},{60, 95, 30},{61, 94, 30},
{62, 93, 30},{63, 93, 29},{64, 94, 29},{65, 95, 29},

{66, 96, 291,{67, 97, 29}.{68, 98, 29},{69, 99, 29},

{70, 100, 29}{71, 101, 29},{72, 102, 29},{73, 103, 29},
{74, 104, 29},{75, 103, 28},{76, 100, 28},{77, 99, 28},
{78, 98, 28},{79, 97, 28},{80, 96, 28},{81, 95, 28},

{82, 96, 27}.{83, 97, 27}.{84, 98, 27}.{85, 99, 27}.

{86, 99, 26},{87, 98, 261,{88, 97, 26},{89, 97, 25}};

main(argc, argv)
int argc;
char *argv[];

int wellno, latitude, longitude, scancnt;

int gdeg, q7, g2, remain;

int latd, latm, lats, latmss, latmssmin, latmssmax;

int Ingd, Ingm, Ings, Ingmss, Ingmssmin, Ingmssmax;
char loc_ok ="y, errtype = 'n', inst[30];

FILE *datafp, *outfp;

/* usage message for careless users */

if(argc 1= 3){
fprintf(stderr, "\nUSAGE: %s infile outfile\n", argv[0]);
exit(1);}

/* open the data file READ ONLY */
if((datafp = fopen(argv[1], "r")) == NULL){
fprintf(stderr, "\nunable to open data file: %s.\n",
argv[1]);
exit(1);}
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/* open the output file */
if((outfp = fopen(argv[2], "w")) == NULL){
fprintf(stderr, "\nunable to open output file: %s.\n",
argv[2]);
fclose(datafp);
exit(1);}

/* read a line from the input file*/
while((scancnt = fscanf(datafp, "%s", inst)) != EOF){

/* if the line is properly formatted, extract and test
the data */

if(sscanf(inst,"%d,%d,%d",
&wellno, &latitude, &longitude) == 3){

/* parse the well number into degree quad, 7.5 min quad,
and 2.5 min quad numbers */

gdeg = wellno / 100000;

remain = wellno % 100000;

g7 = remain / 1000;

remain = remain % 1000;

g2 = remain / 100;

remain = remain % 100;

/* parse latitude into degrees minutes seconds */
latd = latitude / 10000;

remain = latitude % 10000;

latm = remain / 100;

lats = remain % 100;

/* parse longitude into degrees minutes seconds */
Ingd = longitude / 10000;

remain = longitude % 10000;

Ingm = remain / 100;

Ings = remain % 100;

/* add minutes and seconds as seconds */
latmss = latm * 60 + lats;
Ingmss = Ingm * 60 + Ings;

/* identify inconsistent 1-degree quad numbers */
if(latd != secor[gdeg-1][2] || Ingd != secor[qdeg-1][1]){
loc_ok ='n’;
errtype ='d";}

/* define range of lat and long for 7.5 minute quad
nb: 7.5 min = 450 sec */

latmssmin = ((64 - q7) / 8) * 450;

latmssmax = latmssmin + 450;

Ingmssmin = ((64 - q7) % 8) * 450;

Ingmssmax = Ingmssmin + 450;

/* identify inconsistent 7.5 minute quad numbers */

if(loc_ok =="y'}{

if(latmss < latmssmin || latmss > latmssmax ||
Ingmss < Ingmssmin || Ingmss > Ingmssmax){
loc_ok ='n"
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errtype ='7";}}

* define range of lat and long for 2.5 minute quad
nb: 2.5 min = 150 sec */

latmssmin = latmssmin + ((9 - g2) / 3) * 150;

latmssmax = latmssmin + 150;

Ingmssmin = Ingmssmin + ((9 - g2) % 3) * 150;

Ingmssmax = Ingmssmin + 150;

/* identify inconsistent 2.5 minute quad numbers */

if(loc_ok =="y"§

if(latmss < latmssmin || latmss > latmssmax ||
Ingmss < Ingmssmin || Ingmss > Ingmssmax){
loc_ok ='n"
errtype = '2";}}

/* print results to output file */
fprintf(outfp, "%d,%c,%c\n", wellno, loc_ok, errtype);

/* reinitialize output variables */
loc_ok ="'y
errtype ='n';
} /* end of test loop */
} /* end of file read loop */

fclose(datafp);
fclose(outfp);

} I* end of program test_quad.c */
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/* include.aml -- selects those records to be included in TWDB
[* nitrate study. Should be run after testquad.aml

[* set up relate to gain access to well records from nitrate
/* measurement table.
relate add

well

twdb_wells.dat

INFO

wellno

wellno

ordered

rw

tables

/* add items to well and measurement tables to indicate

/* inclusion in study, and wells with included measurements
additem twdb_wells.dat meas 1 1 ¢

additem twdb_wells.dat include 1 1 c

additem twdb_wells.nitinclude 1 1 ¢

/* sort the well table by well number to speed up relate
sel twdb_wells.dat
sort wellno

/* set MEAS field to 'n' (records corresponding to wells with
/* included measurements will be changed later in the program.)
move 'n'to meas

/* select the nitrate table and restrict the selection to
/* records with remarks indicating poor reliability
sel twdb_wells.nit
res reliability_rem ='01" or reliability_rem ='02" ~
or reliability_rem ='03'

/* add to selection records with no corresponding well records
asel wellno ne well//wellno

/* add to selection records for measurements from
/* mis-located wells
asel well//quad_ok ='n'

/* add to selection records with thresholds above
/* 0.1 mg/l (as N) or 0.45 (as nitrate)
asel q71850 flag = '<' and q71850_nitrate gt 0.45

/* add to selection records with "greater than" flag
asel q71850 flag = ">

/* add to selection records for samples prior to 1962
asel yy date It 1962

/* mark selg—:-cted records for exclusion
move 'n' to include
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/* invert selection and mark those records for inclusion
nsel
move 'y' to include

/* mark well records corresponding to included measurements
move 'y' to well//meas

/* mark well records to be included in study
sel twdb_wells.dat

res quad_ok ='y' and meas =y’

move 'y' to include

nsel

move 'n' to include

/* create table include.nit
copy twdb_wells.nit include.nit
sel include.nit
res include ='n'
purge

y

/* create table include.wells
copy twdb_wells.dat include.wells
sel include.wells
res include ='n'
purge

y

g stop
relate drop
wells

&return
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[* years.aml -- procedure followed to add items to info table
[* station.mean indicating first year and last year of data
[* reported and maximum gap in recording period.

tables

sel prec.dat

sort station_id station_name year

unload gap.dat station_id station_name year

sys awk -f firstyear gap.dat > first.out
sys awk -f lastyear gap.dat > last.out
sys awk -f maxgap gap.dat > gap.out

define first.in
station id55i
station_name 23 23 ¢
firstyear 4 4 i

redefine
1
unique
28
28
c

add from first.out

define last.in
station_id55i
station_name 23 23 ¢
lastyear 4 4 i

redefine
1
unique
28
28
c

add from last.out

define gap.in
station_id55i
station_name 23 23 ¢
gap 2 2i

redefine
1
unigue
28
28
c

add from gap.out

q stop
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joinitem station.mean gap.in station.mean unique op_40
joinitem station.mean last.in station.mean unique op_40
joinitem station.mean first.in station.mean unique op_40

&return
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# firstyear -- awk script to find first reporting year in annual
# reports from stations identified by ID humber and name.

# Expects input in form of comma-delimited fields containing
# station ID, station name, and reporting year.

BEGIN{FS=0OFS=",";
station = "";
staname ="";}

$1 != station || $2 != staname{print $1,$2,$3;

station = $1;
staname = $2;}
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# lastyear -- awk script to find last reporting year in annual

# reports from stations identified by ID number and name.

# Expects input in form of comma-delimited fields containing
# station ID, station name, and reporting year.

BEGIN{FS=0OFS=",";
lastyear = 0
station ="
staname ="}

$1 != station || $2 != staname{print station,staname,lastyear;
station = $1
staname = $2
lastyear = $3}

$1 == station && $2 == staname{lastyear = $3;}
END{print station,staname,lastyear}
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# maxgap -- awk script to find maximum gap in annual reports
# from stations identified by ID number and name. Expects

# input in form of comma-delimited fields containing

# station ID, station name, and reporting year.

BEGIN{FS=0OFS=",";
gap = 0;
count = 0;
lastyear = 0
station ="
staname ="}

$1 != station || $2 != staname{print station,staname,count;
count = 0;
station = $1
staname = $2
lastyear = $3}

$1 == station && $2 == staname && $3 == (lastyear + 1)
{lastyear = $3;}
$1 == station && $2 == staname && $3 != (lastyear + 1)
{gap = $3 - lastyear - 1;
if(gap > count) count = gap;
lastyear = $3;}

END{print station,staname,count}
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[* precmean.aml -- procedure followed to calculate mean annual
[* precipitation reported at databsae stations from 1951 to 1980

tables

relate add
station
station.mean
info
unigue
unique
ordered
rw

sel prec.dat
calc station//cnt_40 = station//cnt_40 + 1
calc station//tot_40 = station//tot_40 + prec
res year It 1981
calc station//cnt_30 = station//cnt_30 + 1
calc station//tot_30 = station//tot_30 + prec

sel station.mean
rescnt 40ne 0
calc mean_40 =tot_40/cnt_40
asel
rescnt 30ne 0
calc mean_30 =tot_30/cnt_30

g stop
&return
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[* org_int.aml

/*

[* Calculates integral of organic material in the soil layer
/* table for each component.

relate add
comp
study.comp
info
mapseq
mapseq
ordered
rw

tables

sel study.comp
sort mapseq
calc min-org =0
calc max-org =0
calc avg-org =0

sel study.layer

[* caculate average organic content (pct.)
calc omm = (omh +oml)/2

[* caculate average bulk density (g/cm”3)
calc bdm = (bdh + bdl) / 2

/* multiply average organic content by average bulk density and
/* add the result to the average organic field in the component
/* table. (0.254 converts inches to cm, g/cm”2 to kg/m”2, and
[* percents to decimals.)
calc comp//avg-org = comp//avg-org + omm * bdm ~

* (laydeph - laydepl ) * 0.254

/* multiply max organic content by max bulk density and add the
/* result to the max organic field in the component table.
calc comp//max-org = comp//max-org + omh * bdh ~

* (laydeph - laydepl ) * 0.254

/* multiply min organic content by min bulk density and add the
[* result to the min organic field in the component table.
calc comp//min-org = comp//min-org + oml * bdl ~
* (laydeph - laydepl ) * 0.254
g stop
relate drop
comp

&return
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/*
/*
/*
/*
/*

/*
/*
/*

unit_avg.aml

Calculates average of a numerical item in the soll
component table for each map unit. (executed from
within TABLES)

Read the name of the component item to be averaged, the
destination mapunit item, and, optionally, the definition of
the mapunit item if it does not already exist in the table

&args compitem muitem add itdef:rest

relate add
mapu
study.mapu
info
muid
muid
ordered
rw

/* option to add new item for unit average
&if [TRANSLATE %add%] = 'ADD' &then ~
additem study.mapu %muitem% [UNQUOTE %itdef%]

sel study.mapu
sort muid
calcsum =0
/* if new item option not exercised, set item value to zero
&if [NULL %add%)] &then ~

calc %muitem% =0

sel study.comp
calc mapu//%muitem% = mapu//%muitem% + ~

%compitem% * comppct / 100

calc mapu//sum = mapu//sum + comppct

sel study.mapu
res sum ne 100
list muid Yomuitem% sum

sel

relate drop
mapu

&return
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/* build_quads7.aml -- builds a polygon coverage in geographic
/* (DD) co-ordinates of the 7.5 minute quadrangles used for well
/* numbering by the Texas Water Development Board.

/* make this a double-precision coverage
precision double

/* run the C program that generates the quad coordinates
&sys tx7m > tx7m.gen

/* put the coordinates into a new polygon coverage
generate twdb_7m

input tx7m.gen

polys

quit

[* tidy up the coverage to get rid of double-listed coordinates
clean twdb_7m

[* set up the quadrangle ID numbers used for relates to well
data.
tables
additem twdb_7m.pat quad_7.5m 4 4 i
sel twdb_7m.pat
calculate quad_7.5m = twdb_7m-id
redefine
25
quad_1d
2

2
I

q stop

[* delete the generate data file
&sv delstat := [DELETE tx7m.gen]

&return
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[* tx7m.c -- generates 7.5 minute cells in decimal degrees (DD)
* numbered according to the TWDB well-numbering scheme. Output
* is an Arc/Info generate file. */

#include <stdio.h>

[* set up data matrix for 1-dgree quad locations */

int data[13][4] ={
{4, 1, -104, 37}, /* One-degree quads in Texas fall in 13 */
{4, -1, -101, 36}, /* rows. Numbers for quads run west-to-east*/
{7, 1, -104, 35}, /* and east-to-west in alternating rows. */
{10, -1, -95, 34}, /* The matrix "data" contains 13 four- */
{10, 1, -104, 33}, /* column rows. In each row, the first */
{14, -1, -94, 32}, /* column is the number of cells in the */
{13, 1, -106, 31}, /* corresponding row of one-degree quads. */
{12, -1, -94, 30}, /* The second column is the direction of */
{1, 1, -104, 29}, /* the numbering (1 for west-to-east, -1 */
{6, 1, -101, 29}, /* for east-to-west) in the row. The third*/
{4, -1, -97, 28}, /* and fourth columns are the latitude and */
{3, 1, -100, 27}, /* longitude of the northwest corner of the*/
{1, 1, -98, 26}}; /* lowest-numbered cell in the row. */

/* There are 89 one-degree quads. */

main(){
int dcell = 1;
int row;
int cnt, mcell;

int xcnr, yenr;
float xctr, yctr;
float offset = 0.0625, csize = 0.125;

/* outer loop for rows of one-degree quads */
for(row = 0; row < 13; row++){

/* 1st nested loop for individual one-degree quads */
for(cnt = 0; cnt < data[row][0]; cnt++){

/* locate the northwest corner of the one-degree quad */
xcnr = data[row][2] + data[row][1]*cnt;
yenr = data[row][3];

* 2nd nested loop for 7.5 minute quads */
for(mcell = 0; mcell < 64; mcell++){

/* center of 7.5 minute quad is a half-cell south and east
of
the quad's NW corner. NW corner located by integer
division
of 7.5-minute quad number. Integer quotient is number
of rows
down from top; remainder is number of columns over from
edge. */
xctr = xcnr + (mcell%8)*csize + offset;
yctr = yenr - (mcell/8)*csize - offset;

/* print cell number and center co-ordinates, followed by
cell corner co-ordinates. */
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printf("%d, %f, %f\n", 100*dcell + mcell + 1, xctr, yctr);

printf(" %f, %f\n", xcnr + (mcell%8)*csize, ycnr -
(mcell/8)*csize);

printf(" %f, %f\n", xcnr + (mcell%8)*csize + csize,
yenr - (mcell/8)*csize);

printf(" %f, %f\n", xcnr + (mcell%8)*csize + csize,
yenr - (mcell/8)*csize - csize);

printf(" %f, %f\n", xcnr + (mcell%8)*csize,
yenr - (mcell/8)*csize -csize);

[* print "end" to close polygon */

printf("%s\n", "end");
} /* end 7.5-minute quad loop */

[* step to next one-degree quad */
dcell++;
} I* close one-degree quad loop */
} /* close row loop */

/* print "end" to close generate file */
printf("%s\n", "end");
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/*

/* count_quad.aml -- counts number of wells, number of nitrate
/* measurements, number of nitrate measuements exceeding 0.1, 1,
/* 5, and 10 mg/l (N) thresholds for counties in Texas, based on
/* TWDB data.

/*

I* CALLED BY: user

/*

I* CALLS: none

/*

[* USAGE: &r count_quad

/*

/*****************************************************************

/*

/* VARIABLE LIST

/* LOCAL
1* none

/* GLOBAL
1* none

/*****************************************************************

tables

relate add
quad
counts.quad
info
quad_7.5m
quad_7.5m
ordered
rw

/* initialize the counts and sort the quad data table
sel counts.quad
calc well_cnt=0
calc meas_cnt=0
calc dtct_ cnt=0
calcgtl cnt=0
calcgth cnt=0
calc gt10_cnt=0
calc dtct_prob =0
calc gtl_prob =0
calc gt5_prob =0
calc gt10_prob=0
sort quad_7.5m

sel include.wells
calc quad//well_cnt = quad//well_cnt + 1

sel include.nit
calc quad//meas_cnt = quad//meas_cnt + 1
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res nit_adj gt 0.1
calc quad//dtct_cnt = quad//dtct_cnt + 1

res nit_adj gt 1.0
calc quad//gtl_cnt = quad//gtl_cnt+ 1

res nit_adj gt 5.0
calc quad//gt5_cnt = quad//gt5_cnt + 1

res nit_adj gt 10.0
calc quad//gt10_cnt = quad//gtl0_cnt + 1

sel counts.quad

res meas_cntne 0

calc dtct_prob = dtct_cnt / meas_cnt
calc gtl_prob = gtl _cnt/ meas_cnt
calc gt5_prob = gt5_cnt/ meas_cnt
calc gt10_prob = gt10_cnt / meas_cnt

relate drop
quad

g stop
&return

333



/‘xx ** *kkkkkkkkhkk *kkkkkkkhkk *kkkkkkkhkk *kkkkk *%

/*

[* count_ag.aml -- counts number of wells, number of nitrate
/* measurements, number of nitrate measuements exceeding 0.1, 1,
/* 5, and 10 mg/l (N) thresholds for study aquifers, based on
/* TWDB data.

/*

I* CALLED BY: user

/*

I* CALLS: none

/*

[* USAGE: &r count_aq

/*

/*****************************************************************

/*

/* VARIABLE LIST

/* LOCAL
1* none

/* GLOBAL
1* none

/*****************************************************************

tables

relate add
aq
counts.ag5
info
agf
agf
ordered
rw

/* initialize the counts and sort the aquifer data table
sel counts.ag5
calc well_cnt=0
calc meas_cnt=0
calc dtct_ cnt=0
calcgtl cnt=0
calcgth cnt=0
calc gt10_cnt=0
calc dtct_prob =0
calc gtl_prob =0
calc gt5_prob =0
calc gt10_prob=0
sort aqgf

sel ag5.wells
calc ag//well_cnt = ag//well_cnt + 1

sel ag5.nit
calc ag//meas_cnt = ag//meas_cnt + 1
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res nit_adj gt 0.1
calc ag//dtct_cnt = ag//dtct_cnt + 1

res nit_adj gt 1.0
calc ag//gtl_cnt=aq//gtl _cnt+1

res nit_adj gt 5.0
calc aq//gt5_cnt = aq//gt5_cnt + 1

res nit_adj gt 10.0
calc aq//gt10_cnt = aqg//gtl0_cnt+ 1

sel counts.ag5

res meas_cntne 0

calc dtct_prob = dtct_cnt / meas_cnt
calc gtl_prob = gtl _cnt/ meas_cnt
calc gt5_prob = gt5_cnt/ meas_cnt
calc gt10_prob = gt10_cnt / meas_cnt

g stop
&return
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[* count_aqquad.aml -- counts number of wells, number of nitrate
/* measurements, number of nitrate measuements exceeding the
/¥ 0.1, 1, 5, and 10 mg/l (N) thresholds for 7.5-minute quads in

[* five study aquifers in Texas, based on TWDB data.

/*

I* CALLED BY: user

/*

I* CALLS: none

/*

[* USAGE: &r count_aqquad

/*

/*****************************************************************

/*

/* VARIABLE LIST

/* LOCAL
1* none

/* GLOBAL
1* none

/*****************************************************************

tables

relate add

ag_g
ag_quad.dat
info
quad_7.5m
quad_7.5m
ordered
rw

ed g
ed quad.dat
info
quad_7.5m
quad_7.5m
ordered
rw

cw_(q
cw_quad.dat
info
quad_7.5m
quad_7.5m
ordered
rw

09_9
0g_quad.dat
info
quad_7.5m
quad_7.5m
ordered
rw

hm_q

336



hm_quad.dat
info
quad_7.5m
quad_7.5m
ordered
rw

sr_q
sr_quad.dat
info
quad_7.5m
quad_7.5m
ordered
rw

sel ag_quad.dat
sort quad_7.5m

calcebfz=0
calcczwx =0
calcogll=0

calc symr=0
calc symr=0
calcag _cnt=0

sel ed_quad.dat

sort quad_7.5m
calc well_cnt=0
calc meas_cnt=0
calc dtct_ cnt=0
calcgtl_cnt=0
calcgts cnt=0
calc gtl0 cnt=0
calc dtct_prob =0
calc gtl_prob =0
calc gt5_prob =0
calc gt10_prob =0

sel cw_quad.dat

sort quad_7.5m
calc well_cnt=0
calc meas_cnt=0
calc dtct_ cnt=0
calcgtl cnt=0
calcgth cnt=0
calc gt10_cnt=0
calc dtct_prob =0
calc gtl_prob =0
calc gt5_prob =0
calc gt10_prob=0

sel og_quad.dat
sort quad_7.5m
calc well_cnt=0
calc meas _cnt=0
calc dtct cnt=0
calcgtl cnt=0
calcgts_cnt=0
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calc gtl0 cnt=0
calc dtct_prob =0
calc gtl_prob =0
calc gt5_prob =0
calc gt10_prob=0

sel hm_quad.dat

sort quad_7.5m
calc well_cnt=0
calc meas_cnt=0
calc dtct_ cnt=0
calcgtl_cnt=0
calcgth cnt=0
calc gtl0 cnt=0
calc dtct_prob =0
calc gtl_prob =0
calc gt5_prob =0
calc gt10_prob =0

sel sr_quad.dat

sort quad_7.5m
calc well_cnt=0
calc meas_cnt=0
calc dtct_ cnt=0
calcgtl cnt=0
calcgth cnt=0
calc gt10_cnt=0
calc dtct_prob =0
calc gtl_prob =0
calc gt5_prob =0
calc gt10_prob=0

/* set aquifer flags on quads where wells located, and count
/* the number of wells in each quad in the aquifer tables.
sel ag5.wells
res agf = 'EBFZ'
calc ed_g//well_cnt=ed_g//well_cnt + 1
calc ag_qg/lebfz=1
nsel
res agf = 'CZWX'
calc cw_g//well_cnt =cw_g//well_cnt + 1
calc ag_g//lczwx =1
nsel
res aqf = 'OGLL'
calc og_g//well_cnt = og_g//well_cnt + 1
calc ag_g//ogll =1
nsel
res aqf = 'SYMR'
calc sr_g//well_cnt =sr_g//well_cnt+ 1
calc ag_qg//symr=1
nsel
res agf = '"HMBL'
calc hm_g//well_cnt = hm_g//well_cnt + 1
calc ag_g//hmbl =1

/* Count number of measurements and exceedences of detection
/* limit,1, 5, and 10 mg/I (N) thresholds.
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sel ag5.nit
res agf = 'EBFZ'

calc ed_quad//meas_cnt = ed_quad//meas_cnt + 1
res nit_adj gt 0.1

calc ed_quad//dtct_cnt = ed_quad//dtct_cnt + 1
res nit_adj gt 1.0

calc ed_quad//gtl_cnt=ed_quad//gtl cnt+ 1
res nit_adj gt 5.0

calc ed_quad//gt5_cnt = ed_quad//gt5_cnt + 1
res nit_adj gt 10.0

calc ed_quad//gt10_cnt = ed_quad//gtl0_cnt+ 1

asel
res aqf = 'CZWX'
calc cw_quad//meas_cnt = cw_quad//meas_cnt + 1
res nit_adj gt 0.1
calc cw_quad//dtct_cnt = cw_quad//dtct_cnt + 1
res nit_adj gt 1.0
calc cw_quad//gtl_cnt = cw_quad//gtl cnt+ 1
res nit_adj gt 5.0
calc cw_quad//gt5_cnt = cw_quad//gt5_cnt + 1
res nit_adj gt 10.0
calc cw_quad//gtl0_cnt = cw_quad//gtl0_cnt + 1

asel
res aqf = 'OGLL'
calc og_g//meas_cnt = o0og_g//meas_cnt + 1
res nit_adj gt 0.1
calc og_g//dtct_cnt=o0g_qg//dtct_cnt + 1
res nit_adj gt 1.0
calcog_g//gtl cnt=o0g_qg//gtl cnt+1
res nit_adj gt 5.0
calc og_qg//gt5_cnt =o0g_qg//gt5_cnt + 1
res nit_adj gt 10.0
calc og_q//gtl0_cnt =o0g_qg//gtl0 cnt+ 1

asel
res agf = 'HMBL'
calc hm_g//meas_cnt = hm_g//meas_cnt + 1
res nit_adj gt 0.1
calc hm_qg//dtct_cnt = hm_qg//dtct_cnt + 1
res nit_adj gt 1.0
calc hm_qg//gtl_cnt=hm_g//gtl_cnt+1
res nit_adj gt 5.0
calc hm_qg//gt5_cnt = hm_qg//gt5_cnt + 1
res nit_adj gt 10.0
calc hm_qg//gt10_cnt = hm_qg//gt10_cnt + 1

asel
res agf = 'SYMR'
calc sr_g//meas_cnt = sr_g//meas_cnt + 1
res nit_adj gt 0.1
calc sr_qg//dtct_cnt = sr_g//dtct_cnt+ 1
res nit_adj gt 1.0
calc sr_g//gtl _cnt=sr_qg//gtl cnt+1
res nit_adj gt 5.0
calc sr_qg//gt5_cnt =sr_qg//gt5_cnt + 1
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res nit_adj gt 10.0
calc sr_q//gtl0_cnt =sr_qg//gtl0_cnt+ 1

/* Count the number of aquifers present in each quad
sel ag_quad.dat
calc ag_cnt = ebfz + czwx + ogll + symr + hmbl

[* Calculate the estimated probabilities of exceeding 0.1, 1,
/* 5, and 10 mg/l (N) thresholds.

sel ed_quad.dat
res meas_cntne 0
calc dtct_prob = dtct_cnt / meas_cnt
calc gtl_prob = gtl_cnt/ meas_cnt
calc gt5_prob = gt5_cnt / meas_cnt
calc gt10_prob = gtl0_cnt/ meas_cnt

sel cw_quad.dat
res meas_cntne 0
calc dtct_prob = dtct_cnt / meas_cnt
calc gtl_prob = gtl_cnt/ meas_cnt
calc gt5_prob = gt5_cnt/ meas_cnt
calc gt10_prob = gtl0_cnt/ meas_cnt

sel og_quad.dat
res meas_cntne 0
calc dtct_prob = dtct_cnt / meas_cnt
calc gtl_prob = gtl cnt/ meas_cnt
calc gt5_prob = gt5_cnt/ meas_cnt
calc gt10_prob = gt10_cnt/ meas_cnt

sel hm_quad.dat
res meas_cntne 0
calc dtct_prob = dtct_cnt / meas_cnt
calc gtl_prob = gtl_cnt/ meas_cnt
calc gt5_prob = gt5_cnt / meas_cnt
calc gt10_prob = gtl0_cnt/ meas_cnt

sel sr_quad.dat
res meas_cntne 0
calc dtct_prob = dtct_cnt / meas_cnt
calc gtl_prob = gtl_cnt/ meas_cnt
calc gt5_prob = gt5_cnt/ meas_cnt
calc gt10_prob = gtl0_cnt/ meas_cnt

g stop
relate drop
quad

ed_quad
cw_quad

~&return
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/*

/* count_quad.aml -- counts number of wells, number of nitrate

/* measurements, number of nitrate measuements exceeding 0.1, 1,
/* 5, and 10 mg/l (N) thresholds for counties in Texas, based on

/* WUD data.

1* CALLED BY: user
/* CALLS: none
[* USAGE: &r count_quad

/*****************************************************************
/*
/* VARIABLE LIST

/* LOCAL
1* none

/* GLOBAL
1* none

/*****************************************************************

tables

relate add
quad
counts.quad
info
quad_7.5m
quad_7.5m
ordered
rw

/* initialize the counts and sort the quad data table
sel counts.quad
calc wud_meas =0
calcwud_dtct=0
calcwud _gt1 =0
calcwud gt5=0
calcwud_gtl0=0
calc wdt_prob =0
calcwl prob=0
calcw5 _prob=0
calc wl0_prob =0
sort quad_7.5m

sel nit.wrk
calc quad//wud_meas = quad//wud_meas + 1

resno3 gt 0.1
calc quad//wud_dtct = quad//wud_dtct + 1

resno3 gt 1.0
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calc quad//wud_gtl = quad//wud_gtl + 1

res no3 gt 5.0
calc quad//wud_gt5 = quad//wud_gt5 + 1

res no3 gt 10.0
calc quad//wud_gt10 = quad//wud_gt10 + 1

sel counts.quad

res wud_meas ne 0

calc wdt_prob = wud_dtct / wud_meas
calc wl_prob =wud_gtl /wud_meas
calc w5_prob = wud_gt5 /wud_meas
calc w10_prob = wud_gt10/wud_meas

relate drop
quad

g stop
&return
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PROGRAM BINO2
(:*****************************************************************
C bino2.f -- Uses a cumulative binomial probability function to
C find confidence limits on the single-event probability for a
C series of trials. Built around a binomial distribution
C approximator in the SCDFLIB fortran library, developed at
C M. D. Anderson Cancer Center.
(:*****************************************************************
C USAGE: bino2 confidence_level
C Where confidence level is a number between 0 and 1.

(:*****************************************************************

REAL XN, S, GAMMA1, GAMMAZ2, PP, PUP, PLO, BOUND
INTEGER SWITCH, STATUS, IDW, XNW, SW
CHARACTER*10 ARG1

CHARACTER*16 IDENT

C Open input and output files.
OPEN(7, FILE='bino2.fmt', STATUS="OLD")
OPEN(8, FILE='bino2.in', STATUS='0OLD")
OPEN(9, FILE='bino2.out', STATUS="UNKNOWN)

Read the confidence level off the command line, and calculate
the one-sided equivalent of the two-sided confidence level.
CALL GETARG(1, ARG1)
READ(ARG1, '(F6.4)") GAMMA2
GAMMAL = (1 + GAMMA2)/2.

00

Set the switch variable for the SDFBIN function to 4, so it
will find the unknown binomial parameter.
SWITCH =4

00

C Read the field widths from the Arc/Info unload format file.
READ(7, '(312)") IDW, XNW, SW

C Read an identifier, number of trials, and number of successes
C from a line in the input file.
10 CONTINUE
READ(8, '(A<IDW>, F<XNW>, F<SW>)', END=9999) IDENT, XN, S

C Special case for all successes.
IF (S .EQ. XN) THEN
PUP=1.0
PLO = (1 - GAMMA2)**(1./XN)
STATUS =0
END IF

C Special case for no successes.
IF (S .EQ. 0.) THEN

PLO = 0.0
PUP =1 - (1 - GAMMA2)**(1./XN)
STATUS =0

END IF

C General case.
IF ((S .NE. 0) .AND. (S .NE. XN)) THEN
CALL SDFBIN(SWITCH, GAMMAL, (S-1), XN, PLO, STATUS, BOUND)
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CALL SDFBIN(SWITCH, GAMMAL, (XN-S-1), XN, PP, STATUS,
& BOUND)

PUP=1-PP
END IF

C Print results.
IF(STATUS .EQ. 0)
& WRITE(9, '(A<IDW>, 2(F6, X), F6.4, 2(X, F6.4))")
& IDENT, XN, S, GAMMA2, PLO, PUP
IF(STATUS .NE. 0)
& WRITE(9, '(A<IDW>, 2(F6, X), 3(F6.4, X), 12, X, F3.1)")
& IDENT, XN, S, GAMMA2, PLO, PUP, STATUS, BOUND
GOTO 10

9999 CONTINUE
CLOSE(7)
CLOSE(8)
CLOSE(9)
STOP
END
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/* bino_quad.aml -- calculates confidence intervals for

[* probability of detecting nitrate in concentrations above 0.1,
/* 1,5, and 10 mg/l. Calls system program bino2, which

[* calculates two-sided confidence intervals.

/*

/* No arguments. No variables.

/*****************************************************************

TABLES /* database operations

/* define temporary INFO tables to hold program outputs
DEFINE dtct.temp
QUAD_7.5M 4
DTCT_LO 8
DTCT_UP

4
F

86F
DTCT GAP 8 6

|
6F4
6F4
86F4

DEFINE gt10.
QUAD_7.5
GT10 LO
GT10_UP
GT10 _GA

/* select table of measurement and detection counts
SELECT counts.quad

/* write text file of quad numbers, number of measurements and

/* number of nitrate detections (> 0.1 mg/l).

UNLOAD bhino2.in quad_7.5m meas_cnt dtct_cnt ~
COLUMNAR bino2.fmt INIT

/* call FORTRAN program to calculate confidence intervals
SYSTEM bino2 0.90

/* post-process output file to create INFO input file

/* containing quad number, upper & lower confidence limits,

/* and difference between upper & lower limits.

SYSTEM awk {gap = $6 - $5; print $1","$5","$6","gap}' ~
bino2.out > dtct.csv

/* remove bino2 input & output files
SYSTEM yes|rm bino2.in bino2.fmt bino2.out
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/* repeat for 1, 5, and 10 mg/l detection limits.

UNLOAD bino2.in quad_7.5m meas_cnt gt1_cnt ~
COLUMNAR bino2.fmt INIT

SYSTEM bino2 0.90

SYSTEM awk '{gap = $6 - $5; print $1","$5","$6","gap}' ~
bino2.out > gtl.csv

SYSTEM yes|rm bino2.in bino2.fmt bino2.out

UNLOAD bino2.in quad_7.5m meas_cnt gt5_cnt ~
COLUMNAR bino2.fmt INIT

SYSTEM bino2 0.90

SYSTEM awk '{gap = $6 - $5; print $1","$5","$6","gap}' ~
bino2.out > gt5.csv

SYSTEM yes|rm bino2.in bino2.fmt bino2.out

UNLOAD bino2.in quad_7.5m meas_cnt gt10_cnt ~
COLUMNAR bino2.fmt INIT

SYSTEM bino2 0.90

SYSTEM awk '{gap = $6 - $5; print $1","$5","$6","gap}' ~
bino2.out > gt10.csv

SYSTEM yes|rm bino2.in bino2.fmt bino2.out

/* write results into new INFO tables
SELECT DTCT.TEMP

ADD FROM dtct.csv

SELECT GT1.TEMP

ADD FROM gtl.csv

SELECT GT5.TEMP

ADD FROM gt5.csv

SELECT GT10.TEMP

ADD FROM gt10.csv

/* duplicate INFO table for addition of confidence limit data
COPY counts.quad bino.quad

g stop /* exit tables for last step.

/* expand INFO table with columns containing confidence limits.
JOINITEM bino.quad dtct.temp bino.quad quad_7.5m dtct_prob
JOINITEM bino.quad gtl.temp bino.quad quad_7.5m gtl_prob
JOINITEM bino.quad gt5.temp bino.quad quad_7.5m gt5_prob
JOINITEM bino.quad gt10.temp bino.quad quad_7.5m gt10_prob

&return
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/* logfit.c

* 5/10/94

* revised 9/14/94, changed from natural to common logs.

* Tom Evans

* Civil Engineering Department, University of Texas at Austin
*

/

/xx ** *kkkkkkkkhkk *kkkkkkkhkk *kkkkkkkhkk *kkkkk *%

* logfit.c -- fits data in a two-column comma-delimited input
file to a series of lognormal distributions. The first column
of the input file should contain a string to identify a group
that the data in the second column belong to. All records
Ia}ssociated with a single group should appear on consecutive
ines.

The output file will contain one record for each group
identifier of the input file. These records consist of the
identifier followed by the mean, standard deviation,
coefficient of variation, and regression parameters.

This program uses functions from _Numerical Recipes in C_
(Press et al., 1988), identified in comments as NR.

USAGE: lodfit infile outfile

NOTE ON VARIABLE NAMES:
floating point variable names end in 'f'
double-precision floating point variable names end in 'If'
integer variable names end in '’
double-precision integer variable names end in 'li’
pointer variable names end in 'p'
???fp is a pointer to a file
??7?ip is a pointer to an integer
???fpp is a pointer to an float

L I I R I I A T T . N R R R I

*****************************************************************/

#include <stdio.h>
#include <math.h>

#define MAXCHAR 80 [* Max acceptable input line length */
#define MAX_VECTOR_LENGTH 5000 /* Max length of data vector */

float *vector(); /* NR's variable-offset float vector creator */
void mdian1(); /* NR median-finding function */

int read_line (); /* reads a line of text from a file */

void fit_logn(); /* fits data to a lognormal distribution */

float normz(); /* normal variate for excedance probability */
float normp(); /* exceedance probability for a normal variate */
float betai(); /* NR's incomplete beta function */

/*****************************************************************

* MAIN PROGRAM

*% *kkkkkkkhkk *kkkkhkk *kkkkkkkhkk *kkkkkkkhkk xx/

main(argc, argv)
int argc;
char *argv[];
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float dataf, *datavfp; /* datum from file, data vector */
float medf, meanlogf, stdlogf, R2, t, F, Se, sigF;
/* calculated by fit_log function */
float Pd, P1, P5, P10; /* model probabilities */
int ni; /* number of records in input file */
int cnti = 1; /* number of values in data vector */
char instftMAXCHAR + 1], idst[10], idnewst[10], tempst[10];
FILE *datafp, *outfp;

/* usage message for careless users */

if(argc 1= 3){
fprintf(stderr, "\nUSAGE: %s infile outfile\n", argv[0]);
exit(1);}

/* open the data file READ ONLY */
if((datafp = fopen(argv[1], "r")) == NULL){
fprintf(stderr, "\nunable to open data file: %s.\n",
argv[1));
exit(1);}

/* open the output file */
if((outfp = fopen(argv[2], "w")) == NULL){
fprintf(stderr, "\nunable to open output file: %s.\n",
argv[2));
fclose(datafp);
exit(1);}

/* create the data vector */
datavfp = vector(1,MAX_VECTOR_LENGTH);

/* read the first line from the input file */
if(read_line(datafp, inst, MAXCHAR) == EOF){
printf("\nEmpty input file. Terminating %s.\n", argv[0]);
fclose(datafp);
fclose(outfp);
exit(1);}

[* extract the id and value from the line, extracting new lines
from the data file if the line is bad */
while(sscanf(inst, "%][",],%f", tempst, &dataf) != 2)
if(read_line(datafp, inst, MAXCHAR) == EOF){
printf("\nBad input file. Terminating %s.\n", argv[0]);
fclose(datafp);
fclose(outfp);
exit(1);}
/* put the first value in the data vector and set the first
value of the id string. */
datavfp[cnti] = dataf;
strcpy(idst, tempst);

while(read_line(datafp, inst, MAXCHAR) != EOF){
if(sscanf(inst, "%[",],%f", tempst, &dataf) == 2){

if(strcmp(idst, tempst) != 0){
* when a new id is encountered,
(1) perform the lognormal fitting for the last set of
data, */
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fit_logn(datavfp, cnti, &medf, &meanlogf, &stdlogf,
&R2, &t, &F, &Se, &sigF);

[* (2)print the results to the output file */

fprintf(outfp,"%s,%d,%.2f,%.3f,%.3f,%.4f,%.2f,%.2f,%.3f,%:f,",
idst, cnti, medf, meanlogf, stdlogf, R2, t, F, Se,
sigF);

[* (3)calculate probabilities for nitrate at 0.1, 1, 5, &
10 mg levels */

Pd = 1. - normp((-1.0 - meanlogf)/stdlogf);

P1 = 1. - normp((0.0 - meanlogf)/stdlogf);

P5 = 1. - normp((0.699 - meanlogf)/stdlogf);

P10 = 1. - normp((1.0 - meanlogf)/stdlogf);

[* (4)print the results to the output file */
fprintf(outfp,"%.2f,%.2f,%.2f,%.2\n", Pd, P1, P5, P10);

[* (5)reinitialize the data vector. */
cnti = 0;
strcpy(idst, tempst);} /* end new id block */

/* always add new data to the current vector */
cnti++;
datavfp[cnti] = dataf;}

/* do calculations and prints for the last data set */
fit_logn(datavfp, cnti, &medf, &meanlogf, &stdlogf, &R2, &t, &F,
&Se, &sigF);

fprintf(outfp,"%s,%d,%.2f,%.3f,%.3f,%.4f,%.2f,%.2f,%.3f,%f,",
idst, cnti, medf, meanlogf, stdlogf, R2, t, F, Se, sigF);

Pd = 1. - normp((-1.0 - meanlogf)/stdlogf);

P1 = 1. - normp((0.0 - meanlogf)/stdlogf);

P5 = 1. - normp((0.699 - meanlogf)/stdlogf);

P10 = 1. - normp((1.0 - meanlogf)/stdlogf);

fprintf(outfp,"%.2f,%.2f,%.2f,%.2f\n", Pd, P1, P5, P10);

/* close the files and go home */
fclose(datafp);
fclose(outfp);

} /* end main program */

/*****************************************************************

* function read_line
*****************************************************************/

/* Reads a line from the input file pointed to by ifp and places
it in the string str. Returns 0 if nothing unexpected happens.
Returns 1 if more than maxci charaters appear in the line.
Returns EOF if EOF encountered. */

int read_line(ifp, str, maxci)
FILE *ifp;
char *str;
int maxci;

{
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char c;
int cnti=0, reti =0;

while((c = getc(ifp)) '="\n' && ¢ = EOF){
if(cnti <= maxci)

str[cnti] = c;
cnti++;}
if(cnti > (maxci+1)){
reti = 1,

cnti = maxci + 1;}
if(c == EOF) reti = EOF;
str[cnti] = "0

return reti;
} /* end function count_file_lines */

/*****************************************************************

* function fit_logn
*% *kkkkkkkhkk *kkkkkkkhkk *kkkkkkkhkk *kkkkkkkkhkk xx/
void fit_logn(vectorf, ni, medfp, meanlogfp, stdlogfp, R2, t, F,
Se, sigF)
float *vectorf, *medfp, *meanlogfp, *stdlogfp, *R2, *t, *F,
*Se, *sigF;
int ni;

{
float *z, *logx, *sig, probx, a, b, siga, sigb, chi2, q, df;
int ii, ji; /* counter, number of unique values in vector */

/* special case for 1 value in data vector */
if(ni ==
*medfp = vectorf[1];
*meanlogfp = log10(vectorf[1]);
*stdlogfp = *t = *F = *Se = *R2 = *sigF = 0;
return;}

/* allocate vectors for values and normal variates */
z = vector(1, ni);
logx = vector(1,ni);

/* sort the data vector and find its median value (sorted from
low to high values). */
mdianl(vectorf, ni, medfp);

/* for each unique value in the sorted vector, caculate an
excedance probability from Blom's formula, the corresponding
normal variate, and the log of the value */

ji=1,

for(ii = 1; ii < ni; ii++){
if(vectorf[ii] != vectorf[ii + 1])}{
probx = ((ni-ii+1) - 0.375)/(ni + 0.25);
z[ji] = normz(probx);
logx[ji] = log10(vectorfii]);
ji++;}

[* calculate same values for last value in the data vector */

probx = ((ni-ii+1) - 0.375)/(ni + 0.25);
z[ji] = normz(probx);
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logx[ji] = log10(vectorfii]);

/* special case for 1 value */

if(ji == 1)1
*meanlogfp = log10(vectorf[1]);
*stdlogfp = *t = *F = *Se = *R2 = *sigF = 0;
return;}

fit(logx, z, ji, sig, 0, &a, &b, &siga, &sigb, &chi2, &q);

*meanlogfp = -a/b;
*stdlogfp = 1./b;

df =ji - 2;

if(df == 0.
*t = *F = *Se = *sigFk = 0,;
*R2 =1.0;
return;}

*t = b / sigb;

= *t;

*Se = sqrt(chi2/(ji-2));

*R2 =0;

for(ii = 1; ii <= ji; ii++)*R2 += z[ii]*z[ii];
*R2 =1 - chi2 / *R2;

*sigF = betai( df/2., 0.5, df/(df+*F) );

return;

}

[k *kkkkkkkkkk *kkkkkkkkkk *kkkkkkkkkk *kkkkk *%

* function normz
*****************************************************************/

float normz(p)
float p;

float z, w;

if(p >= 1.0 || p <= 0.0){
fprintf(stderr, "range error on function normz.\n");
z =-9999;

return z;}
if(p==0.5)z=0
else{

if(p < 0.5) w = sqrt(-log(p*p));

if(p > 0.5) w = sqrt(-log((1-p)*(1-p)));

Z =W - (2.515517+0.802853*w+0.010328*w*w)/
(1.+1.432788*w+0.189269*w*w+0.001308*w*w*w);}

if(p <= 0.5) return z;
else return -z;

}

/*****************************************************************

* function normp
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*% *kkkkkkkhkk *kkkkkkkhkk *kkkkkkkhkk *kkkkkkkhkk )(7(/

float normp(z)
float z;

float abz, prob;

abz = fabs(z);

prob = 1.+0.196854*abz+0.115194*abz*abz
+0.000344*abz*abz*abz+0.019527*abz*abz*abz*abz;

prob = 1./(2.*prob*prob*prob*prob);

if(z<O)return prob;
else return 1-prob;
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/‘xx ** *kkkkkkkkhkk *kkkkkkkhkk *kkkkkkkhkk *kkkkk *%

/*

[* fit_quad.aml -- fits nitrate detections for 7.5' quadrangles
/* to lognormal distributions.

* USAGE: &r fit_quad

/*****************************************************************
/*

/* VARIABLE LIST

/*

/* LOCAL

I* delstat -- status of delete operation

/*

/* GLOBAL

I* none

/*****************************************************************

tables

relate add
quad
counts.quad
info
quad_7.5m
quad_7.5m
ordered
rw

sel counts.quad
sort quad_7.5m

sel include.nit

sort quad_7.5m

/* don't fit quads with single measurements or no detects
res quad//meas_cnt gt 1 and quad//dtct_cnt gt 0

unload fit.in quad_7.5m nit_ad]

system logfit fit.in fit.out

sel logfit.quad
add from fit.out

&sv delstat := [DELETE fit.in]
&sv delstat := [DELETE fit.out]

q stop

&return

;*

[* gtl_plot.aml -- plots 7.5' quds shaded according to
[* probability of detecting nitrate gt 1 mgl/l.

/*

[* CALLED BY: user
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1* CALLS: none

I* USAGE: &r gtl_plot <screen|ill> {illustrator file name}
/*****************************************************************

/*

/* VARIABLE LIST

/*

/* LOCAL

I* output -- (argument, string) "screen” directs output to
[* display;

I* "ill" directs output to illustrator file.

I* filename -- (argument, string) name of illustrator file
/*

/* GLOBAL

I* none

/*

[k *kkkkkkkkkk *kkkkkkkkkk *kkkkkkkkkk *kkkkk *%

&args output filename
[* set up program environment
lineset carto.lin
markerset plotter.mrk
shadeset colornames.shd
&if Y%output% = 'screen’ &then ~
display 9999 size canvas 500 650
&else &if %output% = 'ill' &then &do /* illustrator block
&if [NULL %filename%)] &then &do
&ty \using default output filename\
&sv filename := bw.out
&end
&if [exists Y%filename%)] &then &system rm %filename%
display 1040 3
%filename%
&ty \sending output to ILLUSTRATOR file: %filename%\
&end /* end illustrator block
&else &do /* error block
&type Invalid output option
&return
&end /* end error block

/* Begin map composition.

[* Page size set for Apple LaserWriter page writable page area
/* loses 0.35" left 0.47" right 0.42" top 0.42" bottom from 8.5

/* by 11 detrmined by experiment 7/22/93 TAE

[k *kkkkkk *kkkkkkkkkk *kkkkkkkkkk *kkkkk *%

/*
[* set appropriate map limits for composition
/*

/*****************************************************************

maplimits 1.32 3.01 6.73 8.42 /* shifted up 1.0" from original
units page
pagesize 7.68 10.16
[* draw boundaries of writable area of dissertation page on screen
[*&if %output% = 'screen’ &then &do
linesym 101
box 0.05 0.05 7.58 10.06 /* page boundaries
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box 1.20 0.89 6.85 8.98 /* dissertation page area, slopped
line 1.2 1.896.85 1.89 /*
/*&end
/‘xx ** *kkkkkkkkhkk *kkkkkkkhkk *kkkkkkkhkk *kkkkk *%
/*
/* LL and UR corners of writable zone for dissertation pages are:
/* (1.15, 0.84) (6.90, 9.08)
/*
/* Allowing one inch for a title and figure number and about 0.05
/* inches (based on experiment) all around for slop, the limits
/* of the mapable region are:
/* 1.201.89 6.85 8.98
/*
/* map contents follow.
/*
/‘xx ** *kkkkkkkkhkk *kkkkkkkhkk *kkkkkkkhkk *kkkkk *%
mapextent quads_7.5
shadetype color
linesymbol 101

RELATE add
quad
bino.quad
INFO
quad_7.5m
quad_7.5m
ordered
ro

asel quads_7.5 poly

res quads_7.5 poly quad//meas_cnt It 12

asel quads_7.5 poly quad//quad_7.5m ne quad//quad_7.5m
shadecolorcmy 00 0

polygonshades quads_7.5 1000

nsel quads_7.5 poly

res quads_7.5 poly quad//meas_cnt ge 12

res quads_7.5 poly quad//gtl_prob ge 0.0 and quad//gtl_prob It 0.2
shadecolor cmy 100 0 100

polygonshades quads_7.5 1000

nsel quads_7.5 poly

res quads_7.5 poly quad//meas_cnt ge 12

res quads_7.5 poly quad//gtl_prob ge 0.2 and quad//gt1l_prob It 0.4
shadecolor cmy 39.6 19.6 80.4

polygonshades quads_7.5 1000

nsel quads_7.5 poly

res quads_7.5 poly quad//meas_cnt ge 12

res quads_7.5 poly quad//gtl_prob ge 0.4 and quad//gtl_prob It 0.6
shadecolor cmy 0 0 100

polygonshades quads_7.5 1000

nsel quads_7.5 poly

res quads_7.5 poly quad//meas_cnt ge 12
res quads_7.5 poly quad//gtl_prob ge 0.6 and quad//gtl_prob It 0.8
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shadecolor cmy 0 35.3 100
polygonshades quads_7.5 1000

nsel quads_7.5 poly

res quads_7.5 poly quad//meas_cnt ge 12
res quads_7.5 poly quad//gtl_prob ge 0.8
shadecolor cmy 0 100 100
polygonshades quads_7.5 1000

asel quads_7.5 poly
polys quads_7.5

relate drop
quad

/‘xx *% *kkkkkkkhkk *kkkkkkkhkk *kkkkkkkhkk *kkkkk *%
/*
/* end map contents
/*
/*****************************************************************
&if %output% = 'illI' &then ~
display 9999
&return

relate drop
quad

&return
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/* aw_avg.aml -- calculates area weighted average values of
/* soil parameters from STATSGO coverage onto 7.5' quadrangles.

/* Program runs in TABLES subsystem.

[* Establish relate environment to access mapunit and
/* quadrangle tables.

relate add
quad
params.quad
INFO
quad_7.5m
quad_7.5m
ordered
rw
mapu
study.mapu
INFO
muid
muid
ordered
ro
/* In quadrangle data file, clear old soil parameter values
sel params.quad
calculate soilarea = 0
calculate ommar =0
calculate thkar =0

/* SOILCELL is polygon intersection of quads and STATSGO mapunits
/* select polygon table and remove non-soil polygons from
[* calculations.
sel soilcell.pat
reselect muid ne "TXW'
reselect muid cn 'TX'

/* sum soil area, parameter-area products

/* in related quadrangle data table.

calculate quad//soilarea = quad//soilarea + area

calculate quad//ommar = quad//ommar + area * mapu//av-av-org
calculate quad//thkar = quad//thkar + area * mapu//avthk

/* In quadrangle table, calculate area-weighted parameter
[* averages by dividing summed area-parameter products by
/* soil areas.
sel params.quad
reselect soilarea gt 0
calculate avsoilomm = ommar / soilarea
calculate avsoilthk = thkar / soilarea

/* clean up and quit
relate drop

quad

mapu

&return
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